首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
中国东北是研究板内新生代火山活动及其成因的天然场所.以往的研究根据不同的壳幔速度结构,提出多种模型用以解释中国东北地区的火山活动.由于松辽盆地北缘的观测台站相对较少,导致这些模型对盆地北缘的约束较弱.我们利用近年来覆盖松辽盆地北缘的流动宽频带观测台站数据开展远震体波走时层析成像研究,获得了深达800 km的深部速度结构,在盆地北缘的火山群区域内得到如下认识:诺敏河和五大连池火山群共用一个200~300 km深处的地幔岩浆房.该地幔岩浆房内的低速异常为水平展布,未下延至地幔转换带内,并仅在该区域上地幔的局部范围内有所体现.结合前人的研究结果分析,我们认为该水平的局部低速异常可能是中生代晚期岩石圈拆沉导致的软流圈上涌热物质.  相似文献   

2.
横跨大兴安岭与海拉尔盆地和松辽盆地结合地带的大地电磁测深剖面揭示了盆山构造的深部电性结构.剖面西起海拉尔盆地东缘,向东延伸穿过大兴安岭中部,一直到达松辽盆地西缘.本文对剖面测点的二维偏离度、构造走向等进行了计算和分析,采用非线性共轭梯度(NLCG)二维反演方法对TM模式的数据进行了反演,获得了该剖面的地壳、上地幔电性结构模型,划分出三个典型构造单元:海拉尔盆地、大兴安岭和松辽盆地.研究结果表明,海拉尔盆地东缘和松辽盆地西缘浅部都呈低阻特征,但松辽盆地西缘深部电性结构比较复杂,而大兴安岭整体呈高阻特征.海拉尔盆地东缘可能属于兴安块体,松辽盆地西缘与大兴安岭接触关系复杂.海拉尔盆地东缘岩石圈厚度约为110km,大兴安岭岩石圈厚度约为110~150km.大兴安岭上地壳基本呈高阻特征,可能为多次叠置的岩浆岩,代表大兴安岭经历了多期次岩浆作用;中下地壳横向存在较大范围低阻体,可能反映了大兴安岭地壳内部非刚性的特点;残存在岩石圈地幔的高阻异常,说明其下地壳可能发生过拆沉作用.大兴安岭与松辽盆地结合带存在一个岩石圈尺度的西倾低阻带,向下延伸到岩石圈底部,可能是早期松嫩地块向兴安地块俯冲并以软碰撞形式拼合的构造遗迹.  相似文献   

3.
通过数值模拟研究,论证了中生代华北拉通岩石圈受挤压,下地壳玄武岩相变为密度较大的榴辉岩,榴辉岩重力失稳能够引起下地壳的拆沉,造成岩石圈的大规模减薄的可能性.通过对比不同规模的榴辉岩减薄方式发现,当榴辉岩规模较大时可能发生双管道拆沉,而规模小时发生单管道拆沉.计算结果表明当榴辉岩的水平尺度为100 km, 200 km, 300 km时,岩石圈拆沉减薄后厚度分别可达92 km,105 km,136 km.对比中生代华北克拉通岩石圈热侵蚀减薄和拆沉减薄机制,从力学机制上都能造成岩石圈减薄,但它们的结果对应着不同的地表地质特征.热对流减薄,中心区域变热变薄,中心区域是一个伸展区域,发展一个大的变质核杂岩区,岩浆的发展时序是从中心向两侧对称分布,并且向两侧减弱拆沉减薄结果中,中心区域受到挤压加厚,反而变冷.在中心区域的两侧发生两个减薄伸展区域,可能对应两个变质核杂岩区域,岩浆的发展时序是从两侧向中心减弱发展.  相似文献   

4.
利用73个固定台站记录的163个远震事件数据,采用多道互相关技术挑选了5524条S波到时数据,并对S波到时数据进行地壳校正,在此基础上采用天然地震层析成像方法和远震S波到时信息,获得了长江中下游成矿带上地幔的三维S波速度结构模型.研究结果表明:(1)研究区域上地幔存在着明显的低速异常,且走向与成矿带相同,可能为上涌的软流圈热物质;(2)研究区域地幔过渡带和上地幔底部存在着明显的高速异常,可能为俯冲的古太平洋板块和拆沉的岩石圈;(3)成矿带上地幔的低速异常呈现由南向北逐渐变浅的空间分布特征,该特征表明软流圈热物质由南向北上涌.综合分析认为,成矿带中生代大规模岩浆活动和成矿作用的深部过程主要与岩石圈的拆沉密切相关.  相似文献   

5.
雷天  李忠海  刘勉 《地球物理学报》2020,(10):3727-3739
地质与地球物理观测数据表明青藏高原、安第斯山、以及帕米尔等典型造山高原之下均有明显的岩石圈地幔小尺度/分段式减薄现象.这些小尺度岩石圈减薄难以用经典的拆沉或对流减薄理论来解释,一方面,拆沉预示大尺度岩石圈地幔的剥离过程,而对流减薄则在黏度相对低的地幔岩石圈中发生,其主要以小尺度的局部增厚触发并仅减薄地幔岩石圈的底部区域.另一方面,拆沉或对流减薄模型都预测造山带尺度的地幔岩石圈拆离,都假设造山带岩石圈横向均一,然而实际的造山带岩石圈往往由多个不同的地块构成,块体之间岩性、物性、流变结构可能大有差别,即横向不均一性.这些造山带岩石圈地幔的横向不均一性,能否有效解释观测到的局部小尺度减薄现象?为此,我们构建了一系列高精度动力学数值模型,系统模拟了碰撞造山过程中岩石圈地幔的形变和不稳定性.结果表明,在塑性屈服强度很低的情况下,横向不均一的造山带岩石圈有发生分段式/小尺度减薄的可能性;其主要机理是由位错蠕变与强塑性作用所导致的应变集中使得地块间及壳幔间耦合弱化,从而使得较弱地块的岩石圈地幔在增厚时由于重力不稳定性而产生局部剥离,进而诱发小尺度软流圈上涌.模拟结果可以良好地解释发生在青藏高原东北缘...  相似文献   

6.
在喜马拉雅造山带的东缘,雅鲁藏布江缝合带在这里发生急剧转折,南迦巴瓦变质体快速隆起,然而关于东构造结的形成机制一直未有定论.利用围绕南迦巴瓦峰的48个宽频带地震台站记录的远震数据提取P波接收函数,采用改进的H-κ叠加方法和共转换点叠加方法综合研究了东构造结的地壳厚度、波速比分布和地壳结构特征.结果表明:研究区平均地壳厚度为64.03 km,大部分台站介于60.48~66.55 km范围;平均波速比为1.728,主要集中范围为1.696~1.742.东构造结地壳厚度横向变化剧烈,构造结西端和北端厚而中间薄,东构造结核部Moho面呈现上隆的构造形态,东西向上隆幅度约为6~7 km,南北向的上隆超过9~10 km.东构造结核部地壳上隆减薄可能由高密度、高波速的岩石圈撕裂残片拆沉到上地幔软流圈后重力失衡所致.平均波速比超过1.8的高值异常展布于东构造结的两侧,推测为环东构造结的壳内部分熔融体.东构造结地壳上隆减薄和壳内部分熔融的存在很可能均与幔源热物质的上涌有关,而软流圈地幔的上涌则可能由印度板片的撕裂引起.  相似文献   

7.
雷天  李忠海  刘勉 《地球物理学报》1954,63(10):3727-3739
地质与地球物理观测数据表明青藏高原、安第斯山、以及帕米尔等典型造山高原之下均有明显的岩石圈地幔小尺度/分段式减薄现象.这些小尺度岩石圈减薄难以用经典的拆沉或对流减薄理论来解释,一方面,拆沉预示大尺度岩石圈地幔的剥离过程,而对流减薄则在黏度相对低的地幔岩石圈中发生,其主要以小尺度的局部增厚触发并仅减薄地幔岩石圈的底部区域.另一方面,拆沉或对流减薄模型都预测造山带尺度的地幔岩石圈拆离,都假设造山带岩石圈横向均一,然而实际的造山带岩石圈往往由多个不同的地块构成,块体之间岩性、物性、流变结构可能大有差别,即横向不均一性.这些造山带岩石圈地幔的横向不均一性,能否有效解释观测到的局部小尺度减薄现象?为此,我们构建了一系列高精度动力学数值模型,系统模拟了碰撞造山过程中岩石圈地幔的形变和不稳定性.结果表明,在塑性屈服强度很低的情况下,横向不均一的造山带岩石圈有发生分段式/小尺度减薄的可能性;其主要机理是由位错蠕变与强塑性作用所导致的应变集中使得地块间及壳幔间耦合弱化,从而使得较弱地块的岩石圈地幔在增厚时由于重力不稳定性而产生局部剥离,进而诱发小尺度软流圈上涌.模拟结果可以良好地解释发生在青藏高原东北缘、安第斯中部高原、以及帕米尔高原之下岩石圈的局部小尺度/分段式减薄现象.  相似文献   

8.
上地幔速度结构的研究,尤其是,地幔过渡带和岩石圈速度结构对于探测地幔温度、化学组分、地幔对流以及岩石圈破坏等相关动力学问题意义重大。华南块体由扬子克拉通和华夏地块两个微陆块在新元古代晚期碰撞拼合而成,经历了多期强烈的构造运动,是研究太平洋板块俯冲和岩石圈减薄机制等的最佳场所。而青藏高原则是研究陆-陆碰撞的野外实验室,自新生代印度板块与欧亚板块碰撞以来,吸收了至少1 700 km的南北向缩短量,其隆升机制和变形过程是重构青藏高原演化过程的关键。本文介绍了上地幔间断面的成因及其研究意义,总结了上地幔速度结构常用的研究方法及研究进展,重点讨论三重震相方法对上地幔速度结构的研究。本文对远震记录利用时域迭代反褶积技术分别计算了每个事件的震源时间函数和震源深度,并提出利用三重震相相对到时差反演初始速度结构模型的方法,在此基础上,结合试错法波形拟合获取最佳模型,便于今后大量高效地处理观测数据。通过对"中国地震科学台阵探测"项目一期350个流动地震台站以及中国地震台网固定台站的观测记录进行三重震相波形拟合分析,本文分别获得了华南地区以及青藏高原地幔过渡带和岩石圈速度结构特征。结合研究区域的地质、地球物理资料,探讨其可能的动力学机制。华南地区研究结果显示,中扬子克拉通下方过渡带底部存在高速异常,系中侏罗世太平洋板块俯冲至欧亚板块下方的滞留体,异常南界约27°N,向西止于南北重力梯度带(约ll〇〇E),俯冲板块并未穿透660 km的阻力到达下地幔,而是滞留在过渡带底部,使660 km下沉约11 km。而华夏地块过渡带速度结构特征基本与IASP91—致。在整个华南地区,410km上方普遍存在低速层,推测与地幔橄榄岩的部分熔融有关。此外,研究区域内岩石圈普遍存在减薄(80 km),推测可能是太平洋板块的俯冲和快速回撤使岩石圈拆沉所致。且华夏地块减薄幅度更大,软流圈速度更小,说明其上地幔强度较弱、温度较高。自晚白垩起,太平洋板块的东向回撤使得中国大陆东部应力环境由挤压转变为拉张,此前增厚的大陆地壳与岩石圈地幔一起发生重力垮塌导致减薄,而岩石圈的拆沉导致软流圈物质上涌,引发华南地区晚中生代广泛而强烈的岩浆活动。青藏高原地区研究结果表明,拉萨和羌塘地块下方过渡带底部存在高速异常,推测是印度岩石圈俯冲板块的残余,说明印度板块的俯冲前缘已经到达班公怒江缝合带。过渡带底部的高速滞留体使得660 km相变滞后下沉约8?13 km。与此不同的是,松潘甘孜地块过渡带中较小的高速异常可能是拆沉的欧亚岩石圈进入地幔过渡带的体现,拆沉的冷的欧亚岩石圈使得过渡带内410km有所抬升,660km有所下沉,造成地幔过渡带厚度增加。此外,从拉萨、羌塘到松潘甘孜地块,其岩石圈高速盖层速度逐渐减小,到松潘甘孜地块甚至出现缺失。推测在羌塘和松潘甘孜地块上方,此前增厚的欧亚岩石圈在小规模地幔对流或者热不稳定性作用下发生拆沉,拆沉的欧亚岩石圈有可能部分停留在410km上方,部分进入地幔过渡带。  相似文献   

9.
本文利用横波分裂方法对北京大学于田流动台阵记录的SKS震相进行分析,获到了阿尔金断裂西部及邻区的上地幔各向异性参数.分析结果显示,快波偏振方向在整个研究区基本呈近E-W向,与研究区内阿尔金断裂的走向几乎一致,分裂延迟时间在0.93~1.20s之间.综合研究区附近前人横波分裂研究结果,我们认为,在印度和欧亚大陆板块碰撞作用下,青藏高原北部上地幔软流圈物质向北流动,遇到塔里木盆地"克拉通"较厚岩石圈阻挡并发生了旋转,向东西两侧流动,导致在青藏高原和塔里木盆地边界地带软流圈上地幔橄榄岩中晶格沿近E-W向优势排列.这一模式显示阿尔金断裂可能是一个岩石圈尺度的大型走滑断裂:它既控制近地表的上地壳构造运动,同时也影响了上地幔软流圈物质的流动.另外,在向塔里木盆地内部延伸的台站也观测到显著的各向异性和近EW向的快波偏振方向.这些结果表明塔里木盆地"克拉通"岩石圈的中、下部分在南部边界被青藏高原北部上地幔软流圈流动"热侵蚀"而损失一部分,导致青藏高原软流圈向东西两侧的流动已经延伸到塔里木盆地内部.本文的研究结果揭示克拉通岩石圈"活化"不仅可以在垂直方向发生(如,岩石圈拆沉或软流圈上涌导致的热侵蚀),也可以在水平方向上发生,即软流圈的水平流动对克拉通岩石圈边界的热侵蚀作用.  相似文献   

10.
华北地区地壳上地幔S波三维速度结构   总被引:3,自引:0,他引:3  
利用华北地区大型流动地震台阵的记录资料,采用近震和远震联合成像方法,得到了水平分辨率0.5°×0.5°、深至600km的S波速度结构.研究结果表明,上地壳S波速度结构与地表地质构造基本一致,燕山—太行山山脉均呈现高速异常,延庆—怀来盆地、大同盆地表现为低速异常,华北盆地内部的拗陷和隆起分别呈现低速和高速.唐山地区中地壳、山西裂陷盆地中下地壳存在明显的低速异常,可能分别与流体和热物质作用有关,有利于形成孕育强震的地质构造环境.90km的速度结构图像依然与地表的构造特征有较大的相关性,可能说明深部结构对地表构造有一定的控制作用.燕山隆起区岩石圈的厚度可达120~150km左右,华北盆地的岩石圈厚度可能在80km左右,太行山地区的岩石圈厚度介于两者之间.山西裂陷盆地上地幔低速层较厚,反映了该区不稳定的构造环境造成了地幔热物质的上涌.华北盆地下方220~320km出现的高速异常体,可能揭示了华北盆地上地幔仍然存在拆沉后残留的难熔、高密度的古老岩石圈地幔.研究区东部地幔转换带呈低速异常,推测可能与太平洋板块俯冲至该区下方地幔转换带前缘120°E左右的俯冲板块相变脱水有关.  相似文献   

11.
中国东北-华北地区地壳厚度与泊松比及其地质意义   总被引:4,自引:4,他引:0       下载免费PDF全文
本文通过收集和综合分析已有的接收函数H-k研究结果,给出了中国东北-华北地区的地壳厚度与波速比/泊松比分布图.本研究表明该区地壳最薄的地方出现在松辽盆地和华北平原地区(28~35 km);大兴安岭、燕山-太行地区的地壳厚度介于36~45 km范围,其中燕山造山带地壳厚度由东向西逐渐增加;而最厚的地方则出现在鄂尔多斯盆地西南缘(~55 km).研究区平均波速比为1.76±0.05,较全球大陆平均值明显偏高,这可能与中、新生代以来该区显著的岩石圈减薄与破坏过程相关.其中地壳波速比最高的地方出现在山西地堑、长白山、大同-张家口等新生代火山区,意味着这些地区可能具有较高的地壳温度或存在广泛的壳内部分熔融.本文研究显示,大兴安岭造山带地区地壳厚度与波速比/泊松比成负消长关系,推测大兴安岭在形成过程中,地壳的增厚以长英质上地壳增厚为主.与大兴安岭地区不同,松辽盆地及周边地区地壳厚度与泊松比没有明显的相关性,表明松辽盆地可能具有复杂的形成与演化过程.  相似文献   

12.
中国东北地区地壳上地幔三维S波速度结构   总被引:12,自引:9,他引:3       下载免费PDF全文
收集了中国东北地区159个固定地震台2011年1月至2012年6月和27个流动地震台2011年1月至2011年6月间的垂向连续记录,根据噪声成像方法得到研究区(105°E-135°E, 39°N-52°N)较短周期(8~30 s)的瑞雷波群速度和相速度频散资料,再结合该区已有的天然地震长周期瑞雷波(36~145 s)的群速度频散资料,我们反演得到了中国东北地区200 km以浅深度范围内的三维壳幔S波速度结构,并得到了该区的岩石圈厚度分布图.结果表明:研究区中、下地壳S波速度结构的横向分布,在重力梯度带两侧有很大的不同,以东地区显示为大范围的高速,以西地区则呈现为大面积的低速;松辽盆地下方岩石圈地幔表现为显著的高速,岩石圈地幔底界面深度可能在90~100 km,薄的岩石圈盖层暗示东北地区的岩石圈可能发生了减薄;郯庐大断裂下方呈现出大范围的比较显著的低速特征,断裂下方上地幔顶部可能有热物质活动.  相似文献   

13.
田有  刘财  冯晅 《地球物理学报》2011,54(2):407-414
中国东北地区处于古亚洲洋和滨太平洋构造域叠合部位,地质构造极其复杂.利用东北及华北地区部分台网所接收的近震及远震走时资料获得东北地区地壳与上地幔三维P波速度结构,成像分辨率在80 km左右.成像结果表明东北地区地壳与上地幔具有较强的横向不均匀性.P波速度异常走向大体呈北东向,与该区地表构造走向一致.5 km深度的速度异...  相似文献   

14.
南北构造带及邻域地壳、岩石层速度结构特征研究   总被引:4,自引:4,他引:0       下载免费PDF全文
本文利用重力数据采用Parker-Oldenburg方法反演了南北构造带及邻域地区的地壳厚度,同时采用体波地震层析成像方法反演了研究区的地壳至上地幔的三维速度结构.根据计算结果对研究区的地壳及岩石层结构进行了探讨,力图揭示南北构造带及邻域地壳、岩石层变形特征,并且对青藏高原边缘活动带壳幔构造演化的深部成因、研究区的上地幔流变性及其动力学意义进行了相应的讨论.通过分析研究表明南北构造带地区为地壳厚度剧变区,西侧为地壳增厚区,东侧的鄂尔多斯、四川盆地为地壳稳定区,而再向东为地壳逐渐减薄区.中国岩石层减薄与增厚的边界基本被限定在大兴安岭—太行山—秦岭—大巴山—武陵山一带,这也是东部陆缘带和中部扬子、鄂尔多斯克拉通地区深部构造边界的分界线,其两侧不仅浅层地质构造存在较大的差异,上地幔深部的物性状态和热活动也明显不同,这说明研究区的岩石层和软流层结构以及深部物质的分布存在横向非均匀性.中部地区和青藏高原深部构造边界的分界线位于东经100°—102°左右.  相似文献   

15.
基于东北地区已有的宽频带流动台阵远震数据,利用波场延拓和分解的H-β网格搜索法,对松辽盆地的沉积层及地壳结构进行了深入分析。结果显示:松辽盆地的沉积层厚度为0.2—2.5 km,整体呈现中央坳陷区厚、边缘薄且西南地区最薄的分布特征;研究区地壳较薄,厚度介于24—34 km之间,其横向变化特征与沉积层厚度分布具有一定的对应性。依据沉积层和地壳的厚度计算了地壳伸展系数,其平均值接近于以往接收函数研究估测的岩石圈伸展因子。因此,本文推测松辽盆地在伸展构造过程中,其地壳和岩石圈的减薄以纯剪切模式为主。此外,松辽盆地具有较高的地壳平均波速比vP/vS,暗示盆地下方岩石圈地幔的减薄过程中可能存在岩浆的底侵作用。   相似文献   

16.
大兴安岭域,包括大兴安岭及其两侧盆地,穿过额尔古纳地块、兴安地块、松嫩地块和辽源地体.本文在东北地区已有的近东西向的全球地学断面(GGT)资料基础上,在大兴安岭两侧补充了2条近南北向的地球物理剖面,组构了综合地球物理栅状图;又结合区域内其他7条经综合解译的地球物理剖面,分析讨论了研究区壳幔结构特征及其地质意义.论文得到如下初步结果:(1)研究区莫霍界面以大兴安岭重力梯级带为分界,西部和东部深度有明显差异;以索伦山-西拉木伦河缝合带为界的南北岩石圈-软流圈界面(LAB)深度、软流圈有明显差异.呈现出地壳东西分带、岩石圈地幔南北分块的特征.(2)额尔古纳-兴安微板块具有较稳定的岩石圈地幔组构,与南部的中朝板块的岩石圈地幔具有较大差别;额尔古纳地块与西伯利亚板块的岩石圈特征更为接近.(3)获得古缝合带位置线索.林西以南的翁牛特下方存在明显的LAB南北向抬升,这是古亚洲洋闭合在岩石圈尺度上留下的遗迹;索伦山缝合带东延至西拉木伦河,是古亚洲洋闭合的场所.(4)大兴安岭域跨过两条板块缝合带,该区域北部与中部岩石圈组构特征相近,但它们的岩石圈地幔基底并不相同,这是在塔源-喜桂图缝合带于早古生代的拼合之后由数亿年的长期壳幔物质横向均衡作用所致.  相似文献   

17.
位于大兴安岭西北部的中新生代盆地群(海拉尔、根河、漠河),其构造受到大兴安岭断裂、德尔布干断裂的控制,西北方向的蒙古-鄂霍茨克缝合带、南部西拉木伦河-延吉缝合带甚至更远的西太平洋板块运动、印度板块运动以及黑龙江中西部微板块间拼合等区域构造应力场叠加作用在该盆地群基底产生了复杂的深部构造特征.本文利用沿盆地群实施的4条(...  相似文献   

18.
李伟  丁志峰  孙伟家 《地震学报》2019,41(5):549-568
为了进一步认识青藏高原东南缘的构造演化等动力学问题以及该区域的深部孕震机理,本文使用位于该区域内的中国地震科学台阵探测项目的台站所记录到的远震P波波形数据,采用地震光照成像法获取了岩石圈间断面的结构,并讨论了该方法的准确性和稳定性。研究结果显示,青藏高原东南缘的岩石圈西薄东厚,其中:滇缅泰地块腾冲火山附近最薄,约为60 km,其较薄的岩石圈可能是软流圈地幔物质上涌造成的;扬子地块岩石圈厚度从四川盆地向南逐渐减薄,特别是四川盆地下方最厚,可达190 km左右;滇缅泰地块腾冲火山下方150 km深度左右探测到明显的间断面,该间断面可能是腾冲火山原始岩浆源的位置即岩浆源。本研究所得结果 “印支地块与滇缅泰地块结构的连续性” 进一步为印度板块的推挤作用造成腾冲火山低速物质向东溢出的结论提供了地震学证据。此外,研究区域最北端的剖面显示,峨眉山大火成岩省的内带在50—250 km深度范围及其上方地壳内存在明显的局部高速异常,其不均匀分布特征可能与二叠纪火山喷发过程中岩浆底侵及中新生代以来多期次构造活动有关。   相似文献   

19.
Thinning of the cratonic lithosphere is common in nature, but its destruction is not. In either case, the mechanisms for both thinning and destruction are still widely under debate. In this study, we have made a review on the processes and mechanisms of thinning and destruction of cratonic lithosphere according to previous studies of geological/geophysical observations and numerical simulations, with specific application to the North China Craton (NCC). Two main models are suggested for the thinning and destruction of the NCC, both of which are related to subduction of the oceanic lithosphere. One is the “bottom-up” model, in which the deeply subducting slab perturbs and induces upwelling from the hydrous mantle transition zone (MTZ). The upwelling produces mantle convection and erodes the bottom of the overriding lithosphere by the fluid-melt-peridotite reaction. Mineral compositions and rheological properties of the overriding lithospheric mantle are changed, allowing downward dripping of lithospheric components into the asthenosphere. Consequently, lithospheric thinning or even destruction occurs. The other is the “top-down” model, characterized by the flat subduction of oceanic slab beneath the overriding cratonic lithosphere. Dehydration reactions from the subducting slab would significantly hydrate the lithospheric mantle and decrease its rheological strength. Then the subduction angle may be changed from shallow to steep, inducing lateral upwelling of the asthenosphere. This upwelling would heat and weaken the overriding lithospheric mantle, which led to the weakened lithospheric mantle dripping into the asthenosphere. These two models have some similarities, in that both take the subducting oceanic slab and relevant fluid migration as the major driving mechanism for thinning or destruction of the overriding cratonic lithosphere. The key difference between the two models is the effective depth of the subducting oceanic slab. One is stagnation and flattening in the MTZ, whereas the other is flat subduction at the bottom of the cratonic lithosphere. In the NCC, the eastern lithosphere was likely affected by subduction of the Izanagi slab during the Mesozoic, which would have perturbed the asthenosphere and the MTZ, and induced fluid migration beneath the NCC lithosphere. The upwelling fluid may largely have controlled the reworking of the NCC lithosphere. In order to discuss and analyze these two models further, it is crucial to understand the role of fluids in the subduction zone and the MTZ. Here, we systematically discuss phase transformations of hydrous minerals and the transport processes of water in the subduction system. Furthermore, we analyze possible modes of fluid activity and the problems to explore the applied feasibility of each model. In order to achieve a comprehensive understanding of the mechanisms for thinning and destruction of cratonic lithosphere, we also consider four additional possible dynamic models: extension-induced lithospheric thinning, compression-induced lithospheric thickening and delamination, large-scale mantle convection and thermal erosion, and mantle plume erosion. Compared to the subduction-related models presented here, these four models are primarily controlled by the relatively simple and single process and mechanism (extension, compression, convection, and mantle plume, respectively), which could be the secondary driving mechanisms for the thinning and destruction of lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号