共查询到20条相似文献,搜索用时 125 毫秒
1.
高砷地下水中溶解性有机碳和无机碳稳定同位素特征 总被引:1,自引:0,他引:1
随着稳定同位素分析技术的逐步完善,碳稳定同位素被广泛应用于地球化学领域。高砷地下水砷的生物地球化学循环是目前环境化学研究热点之一。分析概括了碳稳定同位素应用于地下水领域的研究现状,介绍了地下水中有机碳和无机碳稳定同位素的前处理方法以及测试技术。在此基础上,选取了内蒙古河套平原具有代表性的高砷地下水进行氧化还原敏感组分、碳稳定同位素的测定与分析。结果表明,As分布极不均匀,其含量为1.24~387 μg/L。地下水溶解性有机碳(DOC)含量相对较高,与溶解性无机碳(DIC)浓度基本呈正相关。δ13CDIC相对δ13CDOC较富集13C;δ13CDIC-δ13CDOC与δ13CDIC之间具有显著的正相关关系;表明δ13CDIC值越贫化,δ13CDIC-δ13CDOC越小,地下水中来源于有机物氧化分解的无机碳越多,进一步说明有机碳的氧化分解在无机碳稳定同位素贫化过程中起主要作用。此外,δ13CDIC-δ13CDOC与As浓度呈一定的负相关关系;表明有机物的微生物降解对砷的富集具有明显的促进作用。微生物可利用的碳源增加,促进异养微生物的代谢,并消耗氧气,最终形成有利于地下水As富集的还原环境。 相似文献
2.
溶解性有机碳(dissolved organic carbon,DOC)在全球碳循环过程中起着重要的作用。目前关于泛北极多年冻土区DOC的研究较多,青藏高原多年冻土区DOC的研究较少。为探讨青藏高原DOC的时空动态、来源,以及对气候变化和多年冻土退化的响应及其影响因素,以位于青藏高原长江源区内8个流域(直门达、沱沱河、雁石坪、风火山1~5)为研究区,通过对河流DOC观测、采样和分析,DOC输出通量计算,结合河流中δ13C-DOC同位素的特征、流域水文特征、植被覆盖率、冻土覆盖率等观测数据,分析河流DOC输出的季节性变化规律和来源。结果表明:长江源多年冻土区河流DOC浓度全年较低,平均浓度在1.91~3.69 mg·L-1之间,年内不同季节间变化率较小,上游DOC浓度大于下游DOC浓度。河流DOC的输出主要集中在夏、秋两季完全融化期,随径流量的增加而显著增加,而冬、春两季输出较少,DOC通量与径流量之间的相关系数达到0.92,与径流量的变化趋势一致。直门达水文站和风火山流域DOC年输出量分别为42 539.67 t和137.33 t,完全融化期... 相似文献
3.
天目山泥炭有机碳同位素特征及其古环境意义 总被引:6,自引:1,他引:6
通过对浙江天目山泥炭剖面的高密度采样和有机碳同位素分析,重建了该地区4 ka BP以来的古植被特征和古环境演化历史.天目山3200 a BP之前,气候温和适度,晚期变冷变干,为中全新世末气候波动的过渡时期.3200~700 a BP,有机碳δ13Corg值在波动中降低,气候出现多次急剧冷暖变化,指示了几次温暖与寒冷事件.700 aBP以来,有机碳同位素迅速正偏,表明又一暖期的出现,到了后期气温又有所降低,植被转化为草原草甸景观.天目山地区近4 ka以来的气候变化与国内外不同区域的研究资料相一致,但又有区域的差异性. 相似文献
4.
有机碳和有机分子碳同位素的地球化学意义 总被引:4,自引:0,他引:4
有机碳和有机分子碳同位素组成的研究不仅在沉积地层对比,油-油,油-源对比研究方向发挥了独特作用,而且在古气候,古环境研究方面更具有广阔的应用剪影。开展对全球气候变化及全球碳循环有重要意义的有机碳碳同位素组成及分布研究和对生物演化,恢复古生态,古环境有重要意义的化石及沉积物中有机分子的碳同位素成及分布研究已势在必行。 相似文献
5.
6.
7.
湘黔地区早寒武世黑色页岩有机碳同位素组成变化及其意义 总被引:4,自引:0,他引:4
对扬子地台湘黔地区早寒武世黑色页岩有机碳同位素的组成变化进行野外地质观察与室内分析研究表明:研究区灯影组白云岩主要为碳酸盐台地沉积环境,牛蹄塘组黑色页岩主要为陆棚沉积环境,湖南地区有可能水体更深,过渡到斜坡相沉积区。通过分析,湘黔地区黑色页岩有机碳含量(TOC)为0.05%~12.31%,平均为4.97%。有机碳同位素(1δ3Corg)组成的变化幅度很大,从-29.49‰~-34.41‰(PDB),平均为-31.78‰,最大偏移量为4.3‰。牛蹄塘组黑色页岩的1δ3Corg和TOC含量变化也很大,具有明显的3个升降旋回,代表海平面具有海进海退变化特征。而下伏地层灯影组白云岩1δ3Corg值相对比较高,代表海平面下降。研究区两个典型剖面的有机碳同位素变化曲线反映了该期海平面变化,海洋原始生产率以及上涌洋流的变化情况,揭示湘黔地区早寒武世的古海洋信息。 相似文献
8.
9.
10.
11.
《Applied Geochemistry》2006,21(4):547-562
Reducing the concentration of dissolved organic C (DOC) in water is one of the main challenges in the process of artificial groundwater recharge. At the Tuusula waterworks in southern Finland, surface water is artificially recharged into an esker by pond infiltration and an equal amount of groundwater is daily pumped from the aquifer. This groundwater study was conducted to consider the role of redox processes in the decomposition of DOC. The isotopic composition of dissolved inorganic C (δ13CDIC) in the recharged water was used as a tracer for redox reactions. The isotopic composition of O and H in water was determined in order to calculate mixing ratios between the local groundwater and the infiltrated surface water. Three distinct processes in the reduction of the DOC content were traced using isotopic methods and concentration analyses of DIC and DOC: (1) the decomposition of DOC, (2) adsorption of DOC on mineral matter, and (3) the dilution of artificially recharged water by mixing with local groundwater. The largest decrease (44%) in the DOC content occurred during the early stage of subsurface flow, within 350 m of the infiltration ponds. The reduction of DOC was accompanied by an equal increase in DIC and a significant drop in δ13CDIC. This change is attributed to the oxidative decomposition of DOC. A further 23% decrease in DOC is attributed to adsorption and a final drop of 14% to dilution with local groundwater. 相似文献
12.
Dissolved organic carbon (DOC) is composed of a diverse array of compounds, predominantly humic substances, and is a near ubiquitous component of natural groundwater, notwithstanding climatic extremes such as arid and hyper-arid settings. Despite being a frequently measured parameter of groundwater quality, the complexity of DOC composition and reaction behaviour means that links between concentration and human health risk are difficult to quantify and few examples are reported in the literature. Measured concentrations from natural/unpolluted groundwater are typically below 4 mg C/l, whilst concentrations above these levels generally indicate anthropogenic influences and/or contamination issues and can potentially compromise water safety. Treatment processes are effective at reducing DOC concentrations, but refractory humic substance reaction with chlorine during the disinfection process produces suspected carcinogenic disinfectant by-products (DBPs). However, despite engineered artificial recharge systems being commonly used to remove DOC from recycled treated wastewaters, little research has been conducted on the presence of DBPs in potable groundwater systems. In recent years, the capacity to measure the influence of organic matter on colloidal contaminants and its influence on the mobility of pathogenic microorganisms has aided understanding of transport processes in aquifers. Additionally, advances in polymerase chain reaction techniques used for the detection, identification, and quantification of waterborne pathogens, provide a method to confidently investigate the behaviour of DOC and its effect on contaminant transfer in aquifers. This paper provides a summary of DOC occurrence in groundwater bodies and associated issues capable of indirectly affecting human health. 相似文献
13.
微生物降解是地下水中有机物自然衰减评估的关键,单体稳定同位素是一种有效的评估方法。在对某油罐泄露场地地下水流场识别的基础上,刻画不同地下水中污染物、微生物及电子受体特征,发现随着与污染源水力联系的减弱,污染物浓度明显减小,微生物群落结构和电子受体氧化还原作用类型与源相似的程度也逐渐减弱,呈现出“污染源-下游源区-下游污染羽-上游源区-侧翼污染羽”的空间变化规律。甲苯、间/对二甲苯碳的同位素标记结果发现,降解程度“侧翼污染羽﹥下游污染羽﹥下游源区”,与电子受体表征降解量的排序相反;该场地微生物降解符合一般化学反应“勒沙特列原理”:污染物浓度越高,降解量越大,但降解程度相对减小。 相似文献
14.
With the purpose of tracing the variations of the organic matter sources of sediments, a sample column (25.96 m in size) from the Hemudu Area of Hangzhou Bay was put through AMS14C dating and biogeochemical analysis. TOC and TN presented similar variation trends, suggesting the same and stable sources of organic matter; the bad correlation between the grain size and TOC content indicated that the organic matter occurrence was neither controlled by the grain size nor the surface absorption of the fine particles, but it may has something to do with the complicated sedimentary hydrodynamic force, the input of organic matter and microbial action. Judging on the basis of C/N ratio and δ13CTOC, the organic carbon in sediments was a mixture of terrigenous and marine organic carbon, testifying to the land-sea interaction characteristic of the study area. The indexes experienced abrupt changes at about 6.5 ka BP, when the lighter terrigenous organic carbon made an increased proportion to the heavier marine organic carbon. The phenomenon reflected the enclosure of the lagoon and the reduced exchange interactions with the seawater of open seas. 相似文献
15.
Composition of dissolved organic matter in groundwater 总被引:1,自引:0,他引:1
Groundwater constitutes a globally important source of freshwater for drinking water and other agricultural and industrial purposes, and is a prominent source of freshwater flowing into the coastal ocean. Therefore, understanding the chemical components of groundwater is relevant to both coastal and inland communities. We used electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to examine dissolved organic compounds in groundwater prior to and after passage through a sediment-filled column containing microorganisms. The data revealed that an unexpectedly high proportion of organic compounds contained nitrogen and sulfur, possibly due to transport of surface waters from septic systems and rain events. We matched 292 chemical features, based on measured mass:charge (m/z) values, to compounds stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG). A subset of these compounds (88) had only one structural isomer in KEGG, thus supporting tentative identification. Most identified elemental formulas were linked with metabolic pathways that produce polyketides or with secondary metabolites produced by plants. The presence of polyketides in groundwater is notable because of their anti-bacterial and anti-cancer properties. However, their relative abundance must be quantified with appropriate analyses to assess any implications for public health. 相似文献
16.
Cheng-Long Tu Cong-Qiang Liu Xiao-Hui Lu Ju Yuan Yun-Chao Lang 《Environmental Earth Sciences》2011,63(4):723-730
There is considerable discussion and uncertainty in the literature regarding the importance of fresh litter versus older soil
organic matter as sources of soil dissolved organic carbon (DOC) in forest floor. In this study, the differences of organic
carbon concentration and stable isotope composition were analyzed under different background conditions to identify the origins
of DOC in forest soil. The data show that there is no significant difference in SOC content between these collected soil samples
(P > 0.05), but the litter-rich surface soils have relatively higher DOC concentration than the litter-lacking (P < 0.01) ones, and the δ
13C values of DOC (δ
13CDOC) are closer to δ
13C of litter than δ
13C values of SOC (δ
13CSOC). In the litter-lacking surface soil samples, the range of δ
13CDOC is between δ
13CSOC and δ
13C of dominant plant leaves. These results suggest that DOC mainly derive from litter in the litter-rich surface soil with,
and the main path of DOC sources may change with surrounding conditions. In addition, δ
13CSOC and δ
13CDOC become more positive, and the absolute values of Δ (δ
13CDOC − δ
13CSOC) decrease with depth in the soil profiles, which indicate that the percentage of DOC below 5 cm, derived from degradation
of humus, may increase with soil depth. 相似文献
17.
δ13CPDB compositions for 39 samples of dissolved organic carbon (DOC) from the Gulf of Mexico-Caribbean Sea-Atlantic Ocean system, the South Pacific and Ross Sea are reported. Deep water values are similar with a mean of ?21.8%. attesting to the homogeneity of the oceanic DOC pool. In Antarctic waters, a 5%. difference between DOC and particulate organic carbon (POC), with POC having values similar to modern plankton (δ13CPDB approx ?27%.) supports the idea of the transient nature of POC as compared to DOC.Total, lipid, acid hydrolyzed, amino acid and residue fractions of POC are about 5, 3, 7, 5 and 3%. respectively, more negative in 2000 m water as compared to surface water samples from the Gulf of Mexico. 相似文献
18.
Michel Bakalowicz 《Comptes Rendus Geoscience》2003,335(5):423-424
19.
Bruce D LaZerte 《Geochimica et cosmochimica acta》1981,45(5):647-656
A model is constructed to predict the stable carbon isotope ratio of the total dissolved CO2 in aquatic sediments and laboratory reactors. The major parameters of the model are the fractionation between CO2 and CH4 as well as the intra-molecular fractionation of acetate, the relative production of CH4 from CO2 reduction versus acetate fermentation, the net production ratio of CO2 to CH4 and the stable carbon isotope ratio of the source organic carbon. The model is fitted to published data and to date from the littoral sediments of Lake Memphremagog, Quebec, Canada. The inclusion of the intra-molecular fractionation factor of acetate in the model provides a good fit to the data; without this factor, the values of the other parameters necessary for a good fit appear unreasonable. 相似文献
20.
《Applied Geochemistry》2003,18(5):719-738
The dissolved He content and He isotope ratio are proxy indicators of groundwater evolution in the Shimokita peninsula. The record of 3H and excess bomb tritiogenic 3He reveals the intrusion depth of shallow and young groundwater into deep groundwater. The record of tritiogenic 3He suggests that prior to the period of nuclear testing, the natural production level of 3H irradiated by cosmic rays was probably 6 TU. Helium isotope ratios in the groundwater converge to that of the regional crustal He with increasing depth and dissolved He content. The regional degassed He has a 3He/4He (R) ratio of 7.24 × 10−7 which consists of 6% mantle He (with R=1. 1 × 10−5) and 94% radiogenic He (with R=1 ×10−8). The magnitude of degassing He flux is 5×10−9 m3/m2 a. Based on the accumulation of He, and taking into consideration the degassing He flux, groundwater at depths greater than 300 m below sea level is estimated to be stagnant, exhibiting residence times in excess of 102 Ka. 相似文献