首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The curve number (CN) is a hydrologic parameter used to describe the stormwater runoff potential for drainage areas, and it is a function of land use, soil type, and soil moisture. This study was conducted to estimate the potential runoff coefficient (PRC) using geographic information system (GIS) based on the area’s hydrologic soil group, land use, and slope and to determine the runoff volume. The soil map for the study area was developed using GPS data carried on to identify the soil texture to be used in building a soil hydrological groups map. Unsupervised and supervised classifications were done to Landsat 5/7 TM/ETM image to generate land-use and land-cover map. This map was reclassified into four main classes (forest, grass and shrub, cropland, and bare soil). Slope map for Al-Baha was generated from a 30-m digital elevation model. The GIS technique was used to combine the previous three maps into one map to generate PRC map. Annual runoff depth is derived based on the annual rainfall surplus and runoff coefficient per pixel using raster calculator tool in ArcGIS. An indication that in the absence of reliable ground measurements of rainfall product, it can satisfactorily be applied to estimate the spatial rainfall distribution based on values of R and R 2 (0.9998) obtained. Annual runoff generation from the study area ranged from 0 to 82 % of the total rainfall. Rainfall distribution in the study area shows the wise use of identifying suitable sites for rainwater harvesting, where most of the constructed dams are located in the higher rainfall areas.  相似文献   

2.
The Survey of India toposheet number 64 G/12 was used as a source of information pertaining to contours, urban features, drainage and lakes and surface water harvesting structures. The commercially available software Surfer was used in this study. Contours were digitized, on screen, from the scanned base map. These data were then interpolated to obtain intermediate contour lines. Using the contour data, a wireframe map was generated to visualize the topography and ground slope variation in three-dimension. Vectors are emplaced over contour and wireframe maps to evaluate the gradient variation in topography. It is evident that the ground slope facilitates the movement of surface water runoff, and is directly proportional. The vector map helps in emphasizing the correlation of ground slope and surface water flow for the topographic analysis of landform for the siting of surface water harvesting structures. Vector maps can be guiding tool for the construction of surface water runoff structures/traps for augmentation of artificial recharge. This is a very fast and reliable method to evaluate the utility of the proposed structure to be used for surface water harvesting before actual construction, and it can be of help to evaluate the suitability of the structure for its maximum utilization.  相似文献   

3.
Water shortage has become a problem in many arid regions where rainfall is low. Wadi Aurnah Basin, in Saudi Arabia (Arabian Peninsula), where the Holy Islamic cities are located, was selected for study, since it represents a water-scarce region. The potential for groundwater storage was investigated. This was achieved using remote sensing and geographic information system (GIS) techniques to cover the whole area (3,113 km2). Satellite images with high spatial resolution were processed to recognize terrain elements controlling the subsurface rock behavior. Landsat 7 ETM+, ASTER and SRTM satellite images were processed using ERDAS IMAGINE software. The influencing factors on groundwater storage were determined and digitally mapped as thematic layers. This included rainfall, lithology, rock fractures, slope, drainage and land cover/use. These factors were integrated in the GIS system (ArcView). A map was produced, indicating potential areas for groundwater storage. The map shows that 12–15% of Wadi Aurnah Basin has potential for groundwater storage, mainly in areas where intensive fracture systems exist.  相似文献   

4.
Natural runoff observation fields with different vegetation coverage were established in the Zuomaoxikongqu River basin in the headwater area of the Yangtze River, and in the Natong River basin and the Kuarewaerma River basin in the headwater area of the Yellow River, China. The experiments were conducted using natural precipitation and artificially simulated precipitation between July and August to study the runoff and sediment-producing effects of precipitation under the conditions of the same slope and different alpine meadow land with coverage in the headwater areas. The results show that, in the three small river basins in the headwater areas of the Yangtze and the Yellow Rivers, the surface runoff yield on the 30° slope surface of the alpine meadow land with a vegetation cover of 30% is markedly larger than that of the fields with a vegetation cover of 95, 92, and 68%. Furthermore, the sediment yield is also obviously larger than the latter three; on an average, the sediment yield caused by a single precipitation event is 2–4 times as large as the latter three. Several typical precipitation forms affecting the runoff yield on the slope surface also influence the process. No matter how the surface conditions are; the rainfall is still the main precipitation form causing soil erosion. In some forms of precipitation, such as the greatest snow melting as water runoff, the sediment yield is minimal. Under the condition of the same precipitation amount, snowfall can obviously increase the runoff yield, roughly 2.1–3.5 times as compared to the combined runoff yield of the Sleet or that of rainfall alone; but meanwhile, the sediment yield and soil erosion rate decrease, roughly decreasing by 45.4–80.3%. High vegetation cover can effectively decrease the runoff-induced erosion. This experimental result is consistent in the three river basins in the headwater areas of the Yangtze and Yellow Rivers.  相似文献   

5.
In (semi-)arid regions, available water resources are scarce and groundwater resources are often overused. Therefore, the option to increase available water resources by managed aquifer recharge (MAR) via infiltration of captured surface runoff was investigated for two basins in northern Jordan. This study evaluated the general suitability of catchments to generate sufficient runoff and tried to identify promising sites to harvest and infiltrate the runoff into the aquifer for later recovery. Large sets of available data were used to create regional thematic maps, which were then combined to constraint maps using Boolean logic and to create suitability maps using weighted linear combination. This approach might serve as a blueprint which could be adapted and applied to similar regions. The evaluation showed that non-committed source water availability is the most restricting factor for successful water harvesting in regions with <200 mm/a rainfall. Experiences with existing structures showed that sediment loads of runoff are high. Therefore, the effectiveness of any existing MAR scheme will decrease rapidly to the point where it results in an overall negative impact due to increased evaporation if maintenance is not undertaken. It is recommended to improve system operation and maintenance, as well as monitoring, in order to achieve a better and constant effectiveness of the infiltration activities.  相似文献   

6.
Identification of water potential areas in arid regions is a crucial element for the enhancement of their water resources and socio-economic development. In fact, water resources system-planning can be used to make various decisions and implement management of water resources policies. The purpose of this study is to identify groundwater storage areas in the high Guir Basin by implementing Geographic Information System (GIS) and Remote Sensing methods. The required data for this study can be summarized into five critical factors: Topography (slope), lithology, rainfall, rock fracture and drainage. These critical factors have been converted by the GIS into thematic maps. For each critical parameter, a coefficient with weight was attributed according to its importance. The map of potential groundwater storage areas is obtained by adding the products (coefficient × weight) of the five parameters. The results show that 50% to 64% of the total area of the High Guir Basin is potentially rich in groundwater, where most of fracture systems are intensely developed. The obtained results are validated with specific yield of the aquifer in the study area. It is noted that there is a strong positive correlation between excellent groundwater potential zones with high flows of water points and it diminishes with low specific yield with poor potential zones.  相似文献   

7.
Identification of water potential areas in arid regions is a crucial element for the enhancement of their water resources and socio-economic development. In fact, water resources system-planning can be used to make various decisions and implement manage- ment of water resources policies. The purpose of this study is to identify groundwater sto- rage areas in the high Guir Basin by implementing Geographic Information System (GIS) and Remote Sensing methods. The required data for this study can be summarized into five critical factors: Topography (slope), lithology, rainfall, rock fracture and drainage. These critical factors have been converted by the GIS into thematic maps. For each cri- tical parameter, a coefficient with weight was attributed according to its importance. The map of potential groundwater storage areas is obtained by adding the products (coeffi- cient × weight) of the five parameters. The results show that 50% to 64% of the total area of the High Guir Basin is potentially rich in groundwater, where most of fracture systems are intensely developed. The obtained results are validated with specific yield of the aqui- fer in the study area. It is noted that there is a strong positive correlation between excel- lent groundwater potential zones with high flows of water points and it diminishes with low specific yield with poor potential zones.  相似文献   

8.
 The purpose of this research is to describe a water-storage method that is more reliable than reservoirs, and to study the efficacy of interception and storage of surface runoff in ponds. In this method, a series of ponds is laid out along a streambank so that interception of surface runoff can be increased and more water can be stored in the wet season for use in the dry season. The simulated results show that the structure of a pond, vegetation and the extent of land development, topographic slope, and the degree to which a pond penetrates an aquifer affect the efficacy of interception and storage of surface runoff in ponds. Received, May 1996 Revised, July 1997, March 1998 Accepted, October 1997  相似文献   

9.
There are many different water harvesting systems in the Middle East and the operation of one type, the mahafir, was investigated in the Badia Region of Jordan. Mahafir are crescent and rectangular shaped excavations dug into the playa surface, now filled with sediment. Their previous volumes were estimated through topographical survey of the surrounding earth mounds. The average depth of the mahafir was found to be 3.2 m; storing a total water volume of 111,619 m3 at Maharouta and 55,005 m3 at Anka. The mahafir only occupy 4% of the playa surface and their source of water is primarily direct rainfall onto the playa surface augmented by runoff from adjacent slopes. Taking annual rainfalls as an input from 1963 to 1992 and even assuming rainfall harvesting is only 10% effective it appears that the full water storage potential of the mahafir could be met in most years.  相似文献   

10.
GIS and Remote Sensing have proved to be an indispensible tool in morphometric analysis. The identification of morphometric properties based on a geographic information system (GIS) was carried out in two watersheds in the Thrissur district of Kerala, India. These watersheds are parts of Western Ghats, which is an ecologically sensitive area. Quantitative geomorphometric analysis was carried out for the Chimmini and Mupily watersheds independently by estimating their (a) linear aspects like stream number, stream order, stream length, mean stream length, stream length ratio, bifurcation ratio, length of overland flow, drainage pattern (b) aerial aspects like circulatory ratio, elongation ratio, drainage density and (c) relief aspects like basin relief, relief ratio, relative relief and ruggedness number. The drainage areas of Chimmini and Mupily watersheds are 140 and 122 km2 respectively and show patterns of dendritic to sub-dendritic drainage. The Chimmini watershed was classified as a sixth order drainage basin, whereas Mupily watershed was classified as a fifth order basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in the stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds. The slope of both watersheds varied from 0° to 50° and 0° to 42° respectively and the slope variation is chiefly controlled by the local geology and erosion cycles. Moreover, these studies are useful for planning rain water harvesting and watershed management.  相似文献   

11.
Groundwater is an important decentralized source of drinking water. Being underground, it is relatively less susceptible to contamination. In addition to domestic needs, it is extensively used for irrigation and industrial purposes. It is therefore necessary to implement groundwater recharge systems by capturing the rainwater runoff. In the present study, GIS-based hydrological assessment of watershed has been used to identify the potential sites for locating the groundwater recharge structures. Based on land use, soil and topography, rainfall runoff modelling was carried out in GIS for a sub-watershed of River Kanhan, in Nagpur District, Maharashtra State, India. Five potential sites with maximum flow accumulation were delineated using the rational method for peak runoff estimation. As the groundwater recharge potential also depends on the geological and geomorphological characteristics of land, analytic hierarchy process (AHP) with expert’s judgement was used for ranking the sites. The criteria considered in AHP were geological features, i.e. lineament density, depth to bedrock and soil cover; geomorphological features, i.e. drainage density, slope, landforms and land use/land cover; and water table level fluctuation. The site P5 with maximum flow accumulation and sandstone rock formation was ranked first. The site P1, where catchment has well-developed drainage and geological formation shows rock with secondary porosity, was ranked second.  相似文献   

12.
Remote sensing data and GIS techniques have been used to compute runoff and soil erosion in the catchment area along the NH-1A between Udhampur and Kud covering an area of approximately 181 km2. Different thematic layers, for example lithology, a landuse and landcover map, geomorphology, a slope map, and a soil-texture map, were generated from these input data. By use of the US Soil Conservation Service curve number method, estimated runoff potential was classified into five levels—very low, low, moderate, high, and very high. Data integration was performed by use of the weighting rating technique, a conventional qualitative method, to give a runoff potential index value. The runoff potential index values were used to delineate the runoff potential zones, namely low, moderate, high, and very high. Annual spatial soil loss estimation was computed using the Morgan–Morgan–Finney mathematical model in conjunction with remote sensing data and GIS techniques. Greater soil erosion was found to occur in the northwestern part of the catchment area. When average soil loss from the catchment area was calculated it was found that a maximum average soil loss of more than 20 t ha−1 occurred in 31 km2 of the catchment area.  相似文献   

13.
14.
 Temporal distributions of the isotopic composition in arid rain storms and in the associated runoff were investigated in a small arid rocky basin in Israel. Customized rain and runoff samplers provided sequential water samples hermetically sealed in high-density PVC bags. In several storms where the runoff was isotopically depleted, compared with the rainfall, the difference could not be explained by fractionation effects occurring during overland flow. A water-balance study relating the runoff discharge to rainfall over a rocky watershed showed that the entire discharge is produced by a very small segment (1–2 mm) of the rain storm. The major objective, therefore, was to provide quantitative relations between segments of rainfall (rain showers and rain spells) and runoff. The time distribution of the composition of stable isotopes (oxygen and hydrogen) was used to quantify the correlation between the rain spell's amount and the consequent runoff. The aim of this work was to (a) utilize the dynamic variations in the isotopic composition in rainfall and runoff and model the magnitude of surface-storage capacity associated with runoff processes of overland flow, and (b) characterize the isotopic composition of the percolating water with respect to the isotopic distribution in rainfall and runoff events. The conceptual model postulates an isotopic mixing of overland flow with water within the depression storage. A transport model was then formulated in order to estimate the physical watershed parameters that control the development of overland flow from a certain rainfall period. Part I (this paper) presents the results and the assessment of the relative depression storage obtained from oxygen-18 and deuterium analyses that lead to the physical and mathematical formulation of a double-component model of kinematic-wave flow and transport, which is presented in Part II (accompanying paper). Received, February 1997 · Revised, September 1997 · Accepted, September 1997  相似文献   

15.
In arid and semi-arid regions without perennial water sources such as rivers or lakes, almost all water supply needs are met by groundwater. Groundwater recharge (GWR) is critical to maintain the abundance of groundwater. This paper presents a methodology based on a decision support system (DSS) that combines remote sensing, field survey and geographic information system techniques to identify suitable GWR areas. The DSS was implemented to obtain suitability maps and to evaluate the existing GWR in the study area. The DSS inputs comprised maps of rainfall surplus, slope, potential runoff coefficient, land cover/use and soil texture. The spatial extents of GWR suitability areas were identified by a hierarchical process analysis that considered five layers. The model generated a GWR map with four categories of suitability: excellent, good, moderate and poor and unsuitable. The spatial distribution of these categories showed that 0.08 and 32.3 % of the study area was classified as excellent and good for GWR, respectively, while 63.2 and 4.42 % of the area was classified as moderate and poor and unsuitable, respectively. Most of the areas with excellent to good suitability have slopes of between 4 and 8 % and are intensively cultivated areas. The major soil type in the excellent to good areas is loam, followed by clay loam, and the rainfall in these areas ranges from 150 to 260 mm. Another suitability model, in which all criteria were assigned equal influence, generated a suitability map in which 0.1 % of the study area was rated as excellent, 10.9 % as good, 82 % as moderate and 7 % as poor and unsuitable. The locations of existing GWR dams were compared with the locations indicated on the generated suitability map using the proximity analysis tool in ArcGIS 10.1. Most (77 %) of the existing GWR structures that were categorised as successful were within the excellent and good areas, followed by moderately suitable (23 %).  相似文献   

16.
This paper attempts to identify the high-risk areas for potential runoff of pyrethroid pesticides in the San Joaquin River Watershed. Pyrethroid pesticides have been detected in water and fluvial sediments in this watershed, creating concerns about potential negative impacts on water quality. However, little documentation exists regarding the distributions or the extent of the adverse effects caused by the use of pyrethroids. This study developed a geographic information systems (GIS) model to identify areas with high potential for pyrethroid runoff during the rainy season. The model was then validated using field-monitoring data. Nine factors were identified for the runoff risk assessment: amount of active ingredient used, soil erodibility factor, hydrologic group, surface layer depth, seasonal rainfall, seasonal number of rainy days, seasonal number of storm events, stream density, and land cover. The results indicated that high pyrethroid runoff risks were associated with basins such as the Stanislaus River Sub-basin, Newman Gustine Sub-basin and South Merced Sub-basin. This study demonstrated that the GIS model is capable of predicting high-risk areas of pyrethroid runoff at sub-basin scale. The model can be used to prioritize sites for water quality monitoring and guide implementations of best management practices. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Soil crust and slope angle are of important factors affecting runoff production and sediment yield. In the hilly areas of the Loess Plateau, North China, slope lands are distributed extensively and subjected to soil crusting; therefore, the research on the responses of runoff and soil loss to soil crust and slope angle is essential to soil and water conservation. In the study, five pairs of 1 m × 5 m plots with slope angles of 5°, 10°, 15°, 20° and 25° respectively, were established in Wangjiagou watershed, which was located at the Loess Plateau, China. Based on the two simulated rainfall events, uncrusted surface prior to the first simulated rainfall event, and crusted surface prior to the second rainfall event were distinguished. The runoff production and soil loss were measured at intervals of 5 min during the simulated events. It indicated that both soil crust and slope angle played an important role in runoff production and soil loss. With the reference slope angle of 5°, the relative importance of soil crust and slope angle in runoff production was calculated. It showed that soil crust effect on the total runoff volume decreased from 100 to ~40%, while slope angle effect increased from 0 to ~60% with increasing slope angle because soil crust less developed on the steeper slopes. Furthermore, soil crust effect was associated with rainfall duration. At the same slope angle, the relative importance of soil crust decreased with rainfall duration because new crust was formed on the uncrusted surface. The critical slope of erosion was also discussed. Soil loss increased with slope angle when the slope angle was less than 20°. Generally speaking, soil crust effect decreased with slope angle and/or rainfall duration.  相似文献   

18.
选择桂林丫吉试验场溶洞—硝岩洞及其上方的汇水坡面作为研究区,通过在不同降雨条件下,对坡面径流和硝盐洞中流水水文动态进行监测并做对比分析研究。结果表明:(1)降雨强度、降雨持续时间和各含水系统前期含水情况决定了岩溶石山区坡面地表和包气带水文动态变化过程;(2)在不同降雨条件下,地表坡面流和经过上部包气带调蓄过的硝盐洞水文动态都表现为暴涨暴落,坡面径流表现的更为明显,一般坡面径流的整个水文过程持续几个小时到十几个小时,而硝盐洞中流水水文过程持续13d;(3)一般大到暴雨条件下,坡面流最大流量大于硝盐洞,但由于持续时间短,其一场降雨后所获得的水量远不如下渗到包气带—硝盐洞中滴水水量。  相似文献   

19.
Groundwater is a dynamic and replenishable natural resource. The numerical modeling techniques serve as a tool to assess the effect of artificial recharge from the water conservation structures and its response with the aquifers under different recharge conditions. The objective of the present study is to identify the suitable sites for artificial recharge structures to augment groundwater resources and assess its performance through the integrated approach of Geographic Information System (GIS) and numerical groundwater modeling techniques using MODFLOW software for the watershed located in the Kodaganar river basin, Dindigul district, Tamil Nadu. Thematic layers such as geology, geomorphology, soil, runoff, land use and slope were integrated to prepare the groundwater prospect and recharge site map. These potential zones were categorized as good (23%), moderate (54%), and poor (23%) zones with respect to the assigned weightage of different thematic layers. The major artificial recharge structures like percolation ponds and check dams were recommended based on the drainage morphology in the watershed. Finally, a threelayer groundwater flow model was developed. The model was calibrated in two stages, which involved steady and transient state condition. The transient calibration was carried out for the time period from January 1989 to December 2008. The groundwater model was validated after model calibration. The prediction scenario was carried out after the transient calibration for the time period of year up to 2013. The results show that there is 15 to 38% increase in groundwater quantity due to artificial recharge. The present study is useful to assess the effect of artificial recharge from the proposed artificial structures by integrating GIS and groundwater model together to arrive at reasonable results.  相似文献   

20.
Groundwater is a valuable natural resource for drinking, domestic, livestock use, and irrigation, especially in arid and semi-arid regions like the Garmiyan belt in Kurdistan region. The Awaspi watershed is located 50 km east of Kirkuk city, south Kurdistan, Iraq; and covers an area of 2146 km2. The paper presents result of a study aimed at: (1) mapping and preparing thematic layers of factors that control groundwater recharge areas, and (2) determination of sites suitable for groundwater recharge. We used available data such as geological map, groundwater depth map, digital elevation model (DEM), Landsat 8 imagery, and tropical rainfall measuring mission (TRMM) data for this study. These data, supplemented by slope features, lithology, land use land cover, rainfall, groundwater depth, drainage density, landform, lineament density, elevation and topographic position index, were utilized to create thematic maps to identify suitable areas of groundwater recharge, using GIS and remote sensing techniques. Analytic hierarchy process (AHP) was applied to weight, rank, and reclassify these maps in the ArcGIS 10.3 environment, to determine the suitable sites for groundwater recharge within the Awaspi watershed. Fifty-five percent of the total area of the watershed was found to be suitable for groundwater recharge; whereas 45% of the area was determined to have poor suitability for groundwater recharge, but can be used for surface water harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号