首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Central Metasedimentary Belt boundary tectonic zone (CMBbtz) is a 10–20-km-wide zone of intense structural deformation within the 1.3–1.0 Ga Grenville orogen of southeastern Canada. The crustal structure of the exposed CMBbtz has been well studied, but its sub-Phanerozoic location and geometry beneath the urban development and nuclear stations of the Toronto region are not well known. A new 75-km Lithoprobe reflection profile acquired close to Toronto provides a clear image of the CMBbtz as a panel of southeast-dipping reflections that extends with moderate dip (<25°) to mid-crustal depth (25 km). These dipping reflections truncate and (or) overprint a subhorizontal band of reflectivity at 21 km depth. The seismic line is oblique to the major structural trends; cross-dip analysis shows that the southeast-dipping reflections have a strike and dip of N13°E and 25°, whereas the “subhorizontal” reflections strike and dip at N65°E and 20°, respectively. Both of these bands of reflectivity can be correlated to magnetic anomalies in the CMBbtz or its immediate footwall. Magnetic anomalies with similar strike directions are well expressed within a distinct rhomboid-shaped region (106×109 km) in the subsurface of western Lake Ontario, herein named Mississauga domain. Taken together, the seismic and magnetic data are inconsistent with existing models, in which the CMBbtz is extrapolated beneath Lake Ontario along a linear magnetic anomaly. We propose a revised subsurface trace of the CMBbtz along the western edge of the Mississauga domain. Small earthquakes in western Lake Ontario appear to cluster along trends co-linear with ENE magnetic anomalies, suggesting a possible degree of basement tectonic control on local intraplate seismicity.  相似文献   

2.
The TRANSALP Group, comprising of partner institutions from Italy, Austria and Germany, acquired data on a 340 km long deep seismic reflection line crossing the Eastern Alps between Munich and Venice. Although the field work was split into four campaigns, between fall 1998 and summer 2001, the project gathered for the first time a continuous profile across the Alps using consistent field acquisition and data processing parameters. These sections span the orogen itself, at its broadest width, as well as the editor Fred Davey and the two adjacent basins. Vibroseis and explosion data, complementary in their depth penetration and resolution characteristics, were obtained along with wide-angle and teleseismic data. The profile shows a bi-vergent asymmetric structure of the crust beneath the Alpine axis which reaches a maximum thickness of 55 km, and 80–100 km long transcrustal ramps, the southward dipping ‘Sub-Tauern-Ramp’ and the northward-dipping ‘Sub-Dolomites-Ramp’. Strongly reflective patterns of these ramps can be traced towards the north to the Inn Valley and towards the south to the Valsugana thrust belt, both of which show enhanced seismicity in the brittle upper crust. The seismic sections do not reveal any direct evidence for the presence of the Periadriatic Fault system, the presumed equivalent to the Insubric Line in the Western Alps. According to our new evolutionary model, the Sub-Tauern-Ramp is linked at depth with remnants of the subducted Penninic Ocean. The ‘crocodile’-type model describes an upper/lower crustal decoupling and wedging of both the European and the Adriatic–African continents.  相似文献   

3.
Crustal structure of mainland China from deep seismic sounding data   总被引:18,自引:0,他引:18  
Since 1958, about ninety seismic refraction/wide angle reflection profiles, with a cumulative length of more than sixty thousand kilometers, have been completed in mainland China. We summarize the results in the form of (1) a new contour map of crustal thickness, (2) fourteen representative crustal seismic velocity–depth columns for various tectonic units, and, (3) a Pn velocity map. We found a north–south-trending belt with a strong lateral gradient in crustal thickness in central China. This belt divides China into an eastern region, with a crustal thickness of 30–45 km, and a western region, with a thickness of 45–75 km. The crust in these two regions has experienced different evolutionary processes, and currently lies within distinct tectonic stress fields. Our compilation finds that there is a high-velocity (7.1–7.4 km/s) layer in the lower crust of the stable Tarim basin and Ordos plateau. However, in young orogenic belts, including parts of eastern China, the Tianshan and the Tibetan plateau, this layer is often absent. One exception is southern Tibet, where the presence of a high-velocity layer is related to the northward injection of the cold Indian plate. This high-velocity layer is absent in northern Tibet. In orogenic belts, there usually is a low-velocity layer (LVL) in the crust, but in stable regions this layer seldom exists. The Pn velocities in eastern China generally range from 7.9 to 8.1 km/s and tend to be isotropic. Pn velocities in western China are more variable, ranging from 7.7 to 8.2 km/s, and may display azimuthal anisotropy.  相似文献   

4.
Existence of a possible detachment zone at Elampillai region, NW margin of Kanjamalai Hills, located in the northern part of Cauvery Suture Zone (CSZ), Southern India, is reported here for the first time. Detailed structural mapping provides anatomy of the zone, which are rarely preserved in Precambrian high grade terranes. The detachment surface separates two distinct rock units of contrasting lithological and structural characters: the upper and lower units. The detachment zone is characterized by a variety of fold styles with the predominance of tight isoclinal folds with varied plunge directions, limb rotations and the hinge line variations often leading to lift-off fold like geometries and deformed sheath folds. Presence of parasitic folding and associated penetrative strains seem to be controlled by differences in mechanical stratigraphy, relative thicknesses of the competent and incompetent units, and the structural relief of the underlying basement. Our present study in conjunction with other available geological, geochemical and geochronological data from the region indicates that the structures of the detachment zone are genetically related to thrust tectonics forming a part of subduction–accretion–collision tectonic history of the Neoproterozoic Gondwana suture.  相似文献   

5.
Analysis of a suite of 2-D seismic reflection profiles reveals that the northwestern Sacramento Valley and eastern Coast Range foothills, northern California, are underlain by a system of blind, west-dipping thrust faults. Homoclinally east-dipping and folded Mesozoic marine forearc strata exposed along the western valley margin define the forelimbs of northeast-vergent fault-propagation folds developed in the hanging walls of the thrusts. Exhumed coherent blueschists of the accretionary complex and attenuated remnants of the ophiolitic forearc basement presently exposed in the eastern Coast Ranges are in the hanging wall of the blind thrust system, and have been displaced from their roots in the footwall. Deep, east-dipping magnetic reflectors in the footwall of the thrust system may be fragments of sheared, serpentinized and attenuated ophiolitic basement. Restoration of slip on the thrusts suggests that the Coast Range fault, which is the exposed structural contact between the coherent blueschists and attenuated ophiolite, originally dipped east and is associated with the east-dipping magnetic reflectors in the footwall. This interpretation of the reflection data is consistent with previous inferences about the deep structure in this region, and supports a two-stage model for blueschist exposure in the eastern Coast Ranges: (1) blueschist exhumation relative to the forearc basin by attenuation of the ophiolitic basement along the east-dipping Coast Range fault system in late Cretaceous; (2) blueschists, attenuated ophiolite, and forearc strata all were subsequently uplifted and folded in the hanging wall of the blind thrust system beginning in latest Cretaceous–early Tertiary. The blind thrust system probably rooted in, and was antithetic to, the east-dipping subduction zone beneath the forearc region. Active transpressional plate motion in western California is locally accommodated, in part, by reactivation of blind thrust faults that originally developed during the convergent regime.  相似文献   

6.
The large-scale POLONAISE'97 seismic experiment investigated the velocity structure of the lithosphere in the Trans-European Suture Zone (TESZ) region between the Precambrian East European Craton (EEC) and Palaeozoic Platform (PP). In the area of the Polish Basin, the P-wave velocity is very low (Vp <6.1 km/s) down to depths of 15–20 km, and the consolidated basement (Vp5.7–5.8 km/s) is 5–12 km deep. The thickness of the crust is 30 km beneath the Palaeozoic Platform, 40–45 km beneath the TESZ, and 40–50 km beneath the EEC. The compressional wave velocity of the sub-Moho mantle is >8.25 km/s in the Palaeozoic Platform and 8.1 km/s in the Precambrian Platform. Good quality record sections were obtained to the longest offsets of about 600 km from the shot points, with clear first arrivals and later phases of waves reflected/refracted in the lower lithosphere. Two-dimensional interpretation of the reversed system of travel times constrains a series of reflectors in the depth range of 50–90 km. A seismic reflector appears as a general feature at around 10 km depth below Moho in the area, independent of the actual depth to the Moho and sub-Moho seismic velocity. “Ringing reflections” are explained by relatively small-scale heterogeneities beneath the depth interval from 90 to 110 km. Qualitative interpretation of the observed wave field shows a differentiation of the reflectivity in the lower lithosphere. The seismic reflectivity of the uppermost mantle is stronger beneath the Palaeozoic Platform and TESZ than the East European Platform. The deepest interpreted seismic reflector with zone of high reflectivity may mark a change in upper mantle structure from an upper zone characterised by seismic scatterers of small vertical dimension to a lower zone with vertically larger seismic scatterers, possible caused by inclusions of partial melt.  相似文献   

7.
The deep seismic reflection traverses across the Central Alps (NFP 20, ECORS-CROP) contain a new set of data on the lower crust which has been interpreted in different ways. One currently fashionable model depicts the European lower crust (ELC) as gently dipping below the Adriatic crust. However, this model requires that an observed sharp termination of the ELC under the internal border of the External Massifs is due to the non-transmission of organized seismic energy through the complex upper crust. This explanation is questioned as other reflections in this and similarly complex areas are recorded, and as the same sharp termination of the ELC under the internal border of the External Massifs is observed on all seismic lines for a length of 300 km. A tectonic — metamorphic cause appears to more satisfactorily explain the obeservations, and therefore an alternative model combining surface and deep geophysical data is proposed. It consists of three mutually largely decoupled tectonic levels. (1) The shallow obducted part or lid, bounded at its base by the combined Late Miocene Jura and Lombardic basal thrusts. Estimates of shortening based on balanced sections are at least about 100 km. (2) The intermediate level between the brittle-ductile transition and the top of the subducted mantle. It contains a stack of lower crust imbrications (with a minor admixture of upper mantle) accommodated by (inducted into) the ductile middle crust. Estimates of shortening based on area balancing are again of the order of slightly more than 100 km. (3) The subducted upper mantle, for which there are no reflection data.In the Central Alps the Late Miocene phase was dextrally transpressive, producing flower structures at the shallow level (External Massifs); the stacks of lower crust imbrications at the intermediate level may be the equivalent of the External Massifs at that level. Inverted flower structures of the subducted mantle are possible, but no detailed data are available.  相似文献   

8.
青藏高原东部的隆升机制一直都是地学界的研究热点,研究学者们提出和发展了多种岩石圈变形模型,而存在多种模型的主要原因之一是对青藏高原东部地壳及岩石圈结构认识不足。本文主要针对SinoProbe-02项目横跨龙门山断裂带、全长400多公里的宽角、折射地震数据及重力数据进行联合反演和综合解释。研究结果表明,龙门山及邻近地区地壳结构可明确划分为上地壳、中地壳和下地壳。上地壳上层为沉积层,龙门山断裂带以西大部分区域被三叠纪复理岩覆盖,而在龙日坝断裂与岷江断裂之间出现了密度为2.7g/cm3的高速异常体;向东靠近龙门山地区,沉积层厚度逐渐减薄。中地壳速度变化不均一,而且变形强烈;若尔盖盆地和龙门山断裂带下方出现明显低速带;中地壳在龙门山西侧厚度加厚,在岷江断裂下方和四川盆地靠近龙门山断裂带地区附近厚度达到最大。莫霍面整体深度从东往西增厚,最厚可达56 km。本次研究得到的地壳结构和密度分布分析结果表明现有的地壳厚度和物质组成不足以支撑龙门山及邻近地区目前所达到的隆升高度,因此四川盆地刚性基底西缘因挤压作用产生的弯曲应力也是该地区抬升的重要条件之一。  相似文献   

9.
《地学前缘(英文版)》2018,9(6):1911-1920
We estimate the shear wave splitting parameters vis-à-vis the thicknesses of the continental lithosphere beneath the two permanent seismic broadband stations located at Dhanbad (DHN) and Bokaro (BOKR) in the Eastern Indian Shield region. Broadband seismic data of 146 and 131 teleseismic earthquake events recorded at DHN and BOKR stations during 2007–2014 were analyzed for the present measurements. The study is carried out using rotation-correlation and transverse component minimization methods. We retain our “Good”, “Fair” and “Null” measurements, and estimate the splitting parameters using 13 “Good” results for DHN and 10 “Good” results for BOKR stations. The average splitting parameters (ϕ, δt) for DHN and BOKR stations are found to be 50.76°±5.46° and 0.82 ± 0.2 s and 56.30°±5.07° and 0.95 ± 0.17 s, and the estimated average thicknesses of the anisotropic layers beneath these two stations are ∼ 94 and ∼109 km, respectively. The measured deviation of azimuth of the fast axis direction (ϕ) from the absolute motion of the Indian plate ranges from ∼8° to 14°. The measured deviation of azimuth of the fast axis direction (ϕ) from the absolute motion of the Indian plate ranges from ∼8° to 14°. The eastward deviation of the fast axis azimuths from absolute plate motion direction is interpreted to be caused by induced outflow from the asthenosphere. Further, the delay time found in the present analysis is close to the global average for continental shield areas, and also coherent with other studies for Indian shield regions. The five “Null” results and the lower delay time of ∼0.5–0.6 s might be indicating multilayer anisotropy existing in the mantle lithosphere beneath the study area.  相似文献   

10.
The large-scale CELEBRATION 2000 seismic experiment investigated the velocity structure of the crust and upper mantle between western portion of the East European Craton (EEC) and the eastern Alps. This area comprises: the Trans-European Suture Zone, the Carpathian Mountains, the Pannonian Basin and the Bohemian Massif. This experiment included 147 chemical shots recorded by 1230 seismic stations during two deployments. Good quality data along 16 main and a few additional profiles were recorded. One of them, profile CEL03, was located in southeastern Poland and was laid out as a prolongation of the TTZ profile performed in 1993. This paper focuses on the joint interpretation of seismic data along the NW–SE trending TTZ–CEL03 transect, located in the central portion of the Trans-European Suture Zone. First arrivals and later phases of waves reflected/refracted in the crust and upper mantle were interpreted using two-dimensional tomographic inversion and ray-tracing techniques. This modelling established a 2-D (quasi 3-D) P-wave velocity lithospheric model. Four crustal units were identified along the transect. From northwest to southeast, thickness of the crust varies from 35 km in the Pomeranian Unit (NW) to 40 km in the Kuiavian Unit, to 50 km in the Radom–Łysogóry Unit and again to 43 km in the Narol Unit (SE). The first two units are thought to be proximal terranes detached from the EEC farther to the southeast and re-accreted to the edge of the EEC during the Early Palaeozoic. The origin of the remaining two units is a matter of dispute: they are either portions of the EEC or other proximal terranes. In the area of the Polish Basin (first two units), the P-wave velocity is very low (Vp < 6.1 km/s) down to depths of 15–20 km indicating that a very thick sedimentary and possibly volcanic rock sequence, whose lower portion may be metamorphosed, is present. The velocity beneath the Moho was found to be rather high, being 8.25 km/s in the northwestern portion of the transect, 8.4 km/s in the central sector, and 8.1 km/s in the southeastern sector.  相似文献   

11.
The POLONAISE'97 (POlish Lithospheric ONset—An International Seismic Experiment, 1997) seismic experiment in Poland targeted the deep structure of the Trans-European Suture Zone (TESZ) and the complex series of upper crustal features around the Polish Basin. One of the seismic profiles was the 300-km-long profile P2 in northwestern Poland across the TESZ. Results of 2D modelling show that the crustal thickness varies considerably along the profile: 29 km below the Palaeozoic Platform; 35–47 km at the crustal keel at the Teisseyre–Tornquist Zone (TTZ), slightly displaced to the northeast of the geologic inversion zone; and 42 km below the Precambrian Craton. In the Polish Basin and further to the south, the depth down to the consolidated basement is 6–14 km, as characterised by a velocity of 5.8–5.9 km/s. The low basement velocities, less than 6.0 km/s, extend to a depth of 16–22 km. In the middle crust, with a thickness of ca. 4–14 km, the velocity changes from 6.2 km/s in the southwestern to 6.8 km/s in the northeastern parts of the profile. The lower crust also differs between the southwestern and northeastern parts of the profile: from 8 km thickness, with a velocity of 6.8–7.0 km/s at a depth of 22 km, to ca.12 km thickness with a velocity of 7.0–7.2 km/s at a depth of 30 km. In the lowermost crust, a body with a velocity of 7.20–7.25 km/s was found above Moho at a depth of 33–45 km in the central part of the profile. Sub-Moho velocities are 8.2–8.3 km/s beneath the Palaeozoic Platform and TTZ, and about 8.1 km/s beneath the Precambrian Platform. Seismic reflectors in the upper mantle were interpreted at 45-km depth beneath the Palaeozoic Platform and 55-km depth beneath the TTZ.

The Polish Basin is an up to 14-km-thick asymmetric graben feature. The basement beneath the Palaeozoic Platform in the southwest is similar to other areas that were subject to Caledonian deformation (Avalonia) such that the Variscan basement has only been imaged at a shallow depth along the profile. At northeastern end of the profile, the velocity structure is comparable to the crustal structure found in other portions of the East European Craton (EEC). The crustal keel may be related to the geologic inversion processes or to magmatic underplating during the Carboniferous–Permian extension and volcanic activity.  相似文献   


12.
In order to understand the role of geological features in the depositional environment and the prevailing oceanic processes on the formation and characteristics of manganese nodules, a detailed morphological study of the manganese nodules was undertaken on 23,000 nodules from 194 locations (including 801 substations) in a nodule‐rich area covering about 150,000 km2 in the Central Indian Basin (CIB). Nodules with rough surface texture dominate most of the area except the south‐eastern part of the basin, which is floored more by the smooth nodules. Smaller nodules (<4 cm) are common and are dominant both in density and mass in the south‐eastern part of the basin, whereas the north‐western part and the central part show dominance of larger rough nodules with higher density and mass. Smooth nodules are also found at shallower depth (<5000 m), on the seamount tops and along the slopes, whereas the rough nodules mostly occur in deeper areas. Significantly, the eastern part of the basin show smooth nodules with smaller size. Smooth nodules >4 cm diameter are rare and show low oxide layer thickness and low bio‐sediment remnants compared to rough surfaced nodules. Large variation in morphological types of nodules are found in the CIB with spheroidal, oblong, triangular, rounded, sub‐rounded or irregular shapes, with irregular nodules being most common. The most common nucleus is altered basalt, while pumice, shark teeth, clay and older nodule nuclei are also present. Water currents and seafloor topography seem to play a major role in defining the nodule morphology. Results of the study show the abundance of smaller nodules with smooth surface texture towards the eastern side of the study area. These features are probably responding to bottom current activity. Inasmuch as the eastern part of the study area is closer to saddles in the Ninety East Ridge (which is the entry point of the Antarctic Bottom Water (AABW) currents into the CIB), the influence of AABW is reflected in the shape and size of the nodules in this area.  相似文献   

13.
The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10–18 wt%) and TiO2 (~1.4–2.7 wt%) indicating a ferrobasaltic composition. The basalts have high incompatible elements (Zr 63–228 ppm; Nb ~1–5 ppm; Ba ~15–78 ppm; La ~3–16 ppm), a similar U/Pb (0.02–0.4) ratio as the normal mid-oceanic basalt (0.16±0.07) but the Ba/Nb (12.5–53) ratio is much larger than that of the normal mid-oceanic ridge basalt (~5.7) and Primitive Mantle (9.56). Interestingly almost all of the basalts have a significant negative Eu anomaly (Eu/Eu*=0.78–1.00) that may have been a result of the removal of feldspar and pyroxene during crystal fractionation. These compositional variations suggest that the basalts were derived through fractional crystallization together with low partial melting of a shallow seated magma.  相似文献   

14.
中国与蒙古之地质   总被引:26,自引:0,他引:26  
东昆仑中部缝合带清水泉一带发育石榴斜长紫苏麻粒岩、紫苏辉石黑云母石榴子石麻粒岩、石榴二辉斜长麻粒岩和石榴单斜辉石麻粒岩,它们与混合岩化黑云母石榴子石变粒岩、黑云母辉石变粒岩、石墨大理岩、含透辉石透闪石大理岩、透辉石大理岩、黑云斜长角闪岩和片麻岩等高级变质岩系以及纯橄岩、辉橄岩、橄长岩、辉长岩、辉绿岩和玄武岩等共同构成蛇绿混杂岩。麻粒岩相变质作用的温压条件为T=760~880℃,p=830~1200MPa,为高温中高压麻粒岩相变质作用,估算其形成深度为40~45km。麻粒岩相变质作用的SHRIMP锆石U-Pb年龄为(507·7±8·3)Ma。清水泉地区蛇绿岩形成于~520Ma,到~508Ma时俯冲至地下40~45km深处而发生中高压麻粒岩相变质作用,然后发生构造折返而剥露至地表。证实了清水泉高级变质岩和基性—超基性岩片是形成于早—中寒武世的蛇绿混杂岩,标志一个古生代早期的非常重要的板块汇聚边界,这对于进一步研究东昆仑造山带构造演化、乃至中国西部大地构造格局具有非常重要的意义。  相似文献   

15.
Crustal-scale seismic profiles across Taiwan and the western Philippine Sea   总被引:13,自引:2,他引:13  
We have used combined onshore and offshore wide-angle seismic data sets to model the velocity structure of the Taiwan arc–continent collision along three cross-island transects. Although Taiwan is well known as a collisional orogen, relatively few data have been collected that reveal the deeper structure resulting from this lithospheric-scale process. Our southern transect crosses the Hengchun Peninsula of southernmost Taiwan and demonstrates characteristics of incipient collision. Here, 11-km-thick, transitional crust of the Eurasian plate (EUP) subducts beneath a large, rapidly growing accretionary prism. This prism also overrides the N. Luzon forearc to the east as it grows. Just west of the arc axis there is an abrupt discontinuity in the forearc velocity structure. Because this break is accompanied by intense seismicity, we interpret that the forearc block is being detached from the N. Luzon arc and Philippine Sea plate (PSP) at this point. Our middle transect illustrates the structure of the developing collision. Steep and overturned velocity contours indicate probable large-scale thrust boundaries across the orogen. The leading edge of the coherent PSP appears to extend to beneath the east coast of Taiwan. Deformation of the PSP is largely limited to the remnant N. Luzon arc with no evidence of crustal thickening to the east in the Huatung basin. Our northern transect illustrates slab–continent collision—the continuing collision of the PSP and EUP as the PSP subducts. The collisional contact is below 20 km depths along this transect NE of Hualien. This transect shows elements of the transition from arc–continent collision to Ryukyu arc subduction. Both of our models across the Central Range suggest that the Paleozoic to Mesozoic basement rocks there may have been emplaced as thick, coherent thrust sheets. This suggests a process of partial continental subduction followed by intra-crustal detachment and buoyancy-aided exhumation. Although our models provide previously unknown structural information about the Taiwan orogen, our data do not define the deepest orogenic structure nor the structure of western Taiwan. Additional seismic (active and passive), geologic, and geodynamic modeling work must be done to fully define the structure, the active deformation zones, and the key geodynamic process of the Taiwan arc–continent collision.  相似文献   

16.
The VRANCEA99 and VRANCEA2001 seismic refraction experiments are part of a multidisciplinary project to study the Eastern Carpathians in Romania. The objectives of these studies are intended to disclose a more detailed picture of the crustal and upper mantle structures above the seismically active Vrancea region. In this paper we provide additional constraints for the upper crustal structures of the area. The 1999 campaign consisted of a 320-km-long N–S profile and a 70-km-long E–W profile. The intersecting 2001 profile extended in E–W direction from the Hungarian border to the Black Sea. In order to enhance the model resolution, first arrival data from local crustal earthquakes were also included.This configuration allowed for the first time to derive a 3-D velocity model for the upper crust of the Romanian Carpathian Orogen, within a 115×235 km wide region, centred over the Vrancea seismic zone. The 3-D model reveals lateral velocity variations, which were not visible on the in-line interpretations. It allows us to distinguish between foreland platform areas, foreland basins and the Carpathian Orogen. Clear velocity differences between the foreland basins south and southeast of the Eastern Carpathians and the Focsani Basin further north indicate different pre-Miocene sedimentary compositions and geological evolutions of these foreland platforms. The involved Moesian and Scythian platforms are separated by the Trotus Fault system, which is observed as a velocity discontinuity. An upper crustal high-velocity zone, above the northern Vrancea seismic zone, could also be identified. This high-velocity zone is explained by a Middle Pliocene to Pleistocene E–W oriented out-of-sequence thrust of the crystalline basement, below the decollement of the flysch nappes.  相似文献   

17.
Masaaki Mishina   《Gondwana Research》2009,16(3-4):563-571
We carried out magnetotelluric (MT) surveys in central northeastern Japan. Two-dimensional resistivity profiles along three survey lines show similar features each other. By comparing the resistivity distribution to the distribution of seismic velocities, we inferred the distribution and flow of crustal fluids. Three fluid flow paths were detected based on the distribution of regions of low resistivity. The first path ascends from the top of the upper mantle, passes through the lower crust, and reaches the surface, forming a fluid chamber within the lower or middle crust. This path is related to the volcanic activity in the backbone range. The second path rises from the first fluid chamber and has produced small fluid reservoirs on both sides of the backbone range. These small reservoirs are considered to be related to the seismicity of the region. The third path is located to the east of the volcanic front and represents another fluid flow path from the uppermost mantle to the lower crust that may have formed a small fluid reservoir to the east of the volcanic front.  相似文献   

18.
Conventional wave-equation-based migration of deep seismic reflection data can produce severe artifacts, which appear as broad circular arcs or “smiles”, due to the existence of apparent truncations of reflections on the stack section arising from poor signal penetration, changes in orientation of the acquisition profile, and the existence of strong overlying lateral velocity variations. These artifacts limit the interpretation of deep seismic profiles, because they obscure weak reflections and reflection truncations that may, e.g., indicate the presence of subsurface faults. Here I present a new migration algorithm, in which each sample of the stack is migrated to a short linear segment whose position and dip are determined by its original position on the stack, an estimate of the local apparent dip at that point, and a user-specified migration velocity. No subjective interpretation of reflections on the stack section is required, and the algorithm produces no arc-like migration artifacts. The degree of lateral smearing can be easily controlled, allowing reflection truncations to be revealed. In practice, the algorithm is most effectively applied to data that have been coherency-filtered to remove low amplitude noise, which would otherwise be preserved.  相似文献   

19.
About 400 pumice clasts collected from the Central Indian Ocean Basin(CIOB)were studied for their morphology and were classified based on their shape and size.A majority of the samples range between<1 cm and 36 cm and in the Zinggs shape diagram plot in the equant and oblate fields.The Corey Shape Factor for most of the samples is close to 0.7,which is common for volcaniclastic material. The physical properties such as density,specific gravity,void ratio,porosity,moisture content and degree of saturation...  相似文献   

20.
深地震反射剖面揭示了庐枞矿集区全地壳的精细结构,在研究火山岩盆地的深部构造、探讨成矿深部过程等方面取得了新认识。从长江至大别山下,Moho由30km左右加深至33km左右,罗河矿下方Moho错断大约3km。庐枞火山岩盆地是一个沿着罗河断裂向东发育的"耳状"非对称盆地,并不存在另外一半隐伏在红层之下的盆地。罗河铁矿对应Moho错断处,处在构造的转换带上。罗河断裂之下存在近于透明的弱反射区域,可能是地幔流体和岩浆上涌、喷发的通道。郯庐断裂、罗河-缺口断裂、长江断裂是庐枞地区的三个重要断裂。郯庐断裂带为不对称花束状构造,近于直立,切穿地壳。小岭矿与龙桥矿可能产出在一个隆起的火成岩体的两翼。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号