首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
定向钻进技术在煤矿井下探放水孔施工中的应用   总被引:2,自引:0,他引:2  
由于煤矿井下采空区汇聚了大量水,对其他采区采掘施工安全带来严重威胁,利用定向钻进技术,可成功地施工探放水钻孔,并通过钻孔将积水放出,消除水害隐患,保证矿区安全生产.  相似文献   

2.
任鹏飞 《探矿工程》2014,41(5):17-19
水灾是威胁煤矿井下安全生产的三大危害之一,施工探放水钻孔是预防和治理水灾的重要手段。结合母杜柴登矿顶板探放水工程,阐述了利用定向钻进技术施工探放水钻孔的工艺方法。实践证明,定向探放水钻孔可以准确地探测出目标区域的含水信息,完全满足矿区探放水要求,为煤矿安全生产提供了保障。  相似文献   

3.
煤矿井下定向钻进工艺技术的应用   总被引:3,自引:0,他引:3  
定向钻进技术以其精确控制钻孔轨迹逐渐被应用于煤矿井下瓦斯抽采钻孔及防治水钻孔施工中。从定向钻进技术的原理入手,以国内多家煤矿企业井下施工定向钻孔的实际资料,研究了定向钻进技术在煤矿井下进行瓦斯抽采、地质构造探测及防治水施工的适用条件、布孔方式和成孔原理。结果显示,定向钻进技术在煤矿井下瓦斯抽采、地质构造探测及防治水领域的应用效果显著。  相似文献   

4.
5.
从水力学中的伯努里(DanielBemouli)方程出发,考虑水流的水头损失,推导出一种井下探放水钻孔涌水量计算的新方法。结合大量的实例计算。证明该公式计算精度高,具有推广应用价值。  相似文献   

6.
谈耀麟 《矿产与地质》1991,5(2):141-144,F003
阐述不同定向钻进技术在金矿勘探中的应用,内容包括利用地层自然造斜规律的具体技术措施;使用死楔或活楔与孔底动力钻具进行定向钻进的具体做法:以及不同定向钻进方法的优缺点对比.  相似文献   

7.
程红文 《探矿工程》2015,42(6):11-16
充填钻孔是一种高精度垂直孔,地层促斜、钻孔自然弯曲率较大时,常规钻进方法难以控制钻孔轨迹。在施工中应用定向钻进及随钻测量技术,则可以对钻孔实施全程轨迹监控,使其按照设计轨迹延伸。主要介绍了广西华锡集团股份有限公司铜坑矿将充填站充填孔施工中定向钻进设计、随钻测量、纠斜、侧钻等技术及工艺等。  相似文献   

8.
侯传东 《探矿工程》2004,31(10):53-55
结合工程实例,对螺杆钻定向钻进技术应用于处理事故孔时的设计、施工进行了详细阐述。特别对螺杆钻在造斜钻进时的钻进工艺、形成分支孔时采取的技术措施进行了总结。  相似文献   

9.
人口、资源和环境问题是全球二十一世纪共同面临的三大难题,也是社会、经济可持续发展的三大要素。本文简要介绍水平定向钻进技术在环境治理中的应用,包括水平环境治理井的设计和施工方法。最后,以问答的形式回答几个大家所关心的问题。希望本文能起到专引玉的作用,并对有关人员在今后进行环境治理时有所启发。  相似文献   

10.
针对硫磺沟煤矿工作面常规施工单孔深度不足、有效孔段短、钻进施工效率低、钻孔孔径小等诸多问题,提出采用窄体式ZDY4000LD(C)型履带钻机、第二代随钻测量系统(YHD2-1000(A)型)等附属定向设备进行穿层定向长钻孔成孔技术,以提高钻孔成孔精度、钻孔深度,增大钻孔孔径等参数,减小煤层因受采动影响,导致工作面瓦斯涌出量增大的问题。现场试验施工了4个大直径穿层定向长钻孔,孔深300 m以上钻孔成孔率达到100%,孔深最深399 m,最大钻孔孔径193 mm,钻进总进尺1581 m,平均孔深395.25 m,钻孔抽采效率显著增加。其中3号钻孔最大抽采混合流量8.3 m3/min,最大抽采纯量1.6 m3/min,瓦斯抽采浓度51%,瓦斯抽采效果显著。  相似文献   

11.
煤矿井下复合定向钻进技术研究与应用   总被引:1,自引:0,他引:1  
针对传动滑动钻进方法施工千米以上长距离定向钻孔遇到的问题,借鉴石油钻井领域先进技术经验,提出煤矿井下近水平复合定向钻进技术,对其高效钻进机理与钻孔轨迹控制原理进行了分析探讨。根据复合定向钻进工艺技术要求,完成了泥浆脉冲无线随钻测量系统选型,完善了复合定向钻进技术装备配套,形成了泥浆脉冲无线随钻测量复合定向钻进工艺,开展了煤矿井下长距离定向钻孔复合定向钻进现场试验,完成一个1 566 m本煤层定向长钻孔。试验结果表明,与传统滑动定向钻进技术相比,在钻进安全性显著提升的基础上,复合定向钻进技术综合钻进效率显著提升,实现了本煤层定向长钻孔的安全高效钻进。  相似文献   

12.
冯达晖 《探矿工程》2018,45(5):8-12
随钻测量梳状定向钻进技术目前主要应用于煤矿瓦斯防治、地质异常体探测和探放水等领域。但该技术还未与水力压裂增透强化抽采技术相结合应用于煤层瓦斯防治领域,由于水力压裂增透强化抽采技术对钻孔特殊要求,相应钻探装备、钻孔设计和钻进成孔工艺均需要进行研究突破。本次研究成果融合了井下梳状定向长钻孔瓦斯抽采技术及水力压裂增透强化抽采技术的优点,形成了一套适合分段水力压裂梳状定向钻孔施工设备及工艺流程,能够满足对松软煤层瓦斯远距离与区域增透技术的需求,解决松软煤层透气性差、瓦斯抽采孔成孔性差、抽采距离短、抽采区域小等难题。  相似文献   

13.
保德煤矿大盘区工作面采前瓦斯超前治理模式要求井下定向长钻孔能够沿煤层钻进3 000 m以上,针对现有技术装备在超长定向钻孔施工中存在滑动钻进困难、进水水路压耗大、有线随钻测量信号传输距离受限、冲洗液无法循环利用等问题,开发了煤矿井下基于螺杆马达水力加压和超长钻具正反扭转给进的滑动钻进减阻工艺、基于回转钻进倾角控制和侧钻分支的复合钻进轨迹控制技术,设计了低压耗进水水路系统、泥浆脉冲无线随钻测量系统和冲洗液净化循环系统,结合保德煤矿生产需要,完成了主孔深度3 353 m、孔径120 mm的顺煤层超长贯通定向孔。钻进效果表明:滑动钻进减阻工艺有效降低了给进力,显著提高了深孔滑动定向钻进能力;基于复合钻进的轨迹控制技术,保证了钻孔轨迹沿煤层定向延伸,并提高了钻进能力和钻进效率;泥浆脉冲无线随钻测量信号长距离传输稳定可靠,克服了有线随钻测量信号传输的局限性;井下冲洗液净化循环系统净化效果良好,实现了井下定向钻进冲洗液循环利用。研究成果对支撑煤矿大区域瓦斯超前治理、以孔代巷工程、水害防治及地质勘探等技术进步具有重要意义。  相似文献   

14.
煤矿井下定向钻进配套钻头的选型与使用   总被引:3,自引:0,他引:3  
合理选配和使用钻头是提高钻进效率和节省钻进成本的关键。结合煤矿井下定向钻孔施工的特点,提出了配套钻头的一般要求。介绍了目前常用钻头的类型和特点,重点介绍了3种不同冠部形状的导向钻头的适用性及选型依据。总结了钻头合理使用的注意事项,为煤矿井下定向钻孔施工合理选择和使用钻头提供了参考依据。  相似文献   

15.
针对煤矿井下碎软煤层瓦斯抽采中风压空气钻进施工中排粉能力有限,易造成粉尘污染问题,提出采用煤矿井下泡沫灌注系统及宽翼螺旋钻杆进行高效泡沫钻进的技术方案。通过对钻孔环空间隙流场的数值模拟,研究宽翼螺旋钻杆结构对泡沫钻进高效排粉的影响,确定头数3、槽宽26 mm、螺距110 mm为宽翼螺旋钻杆的优化结构参数。在淮北某矿3204工作面碎软煤层中进行了深度达195 m的本煤层钻孔试验,结果表明,相对于中风压空气钻进工艺,钻进回转阻力降低了42%~48%,表现出高效的排粉效果,可提高煤矿井下碎软煤层钻孔深度和成孔率。该工艺可为类似煤矿井下深钻孔施工提供借鉴。  相似文献   

16.
针对煤矿井下定向钻进过程中由于托压效应引起的钻进摩阻大、钻进效率低、钻孔深度受限等问题,提出通过钻柱振动减阻的技术思路。采用理论分析和数值模拟进行激振力、激振频率等关键技术参数的设计,研制ø89 mm小直径通缆水力振荡器。在室内测试碟簧和圆柱弹簧两种辅助复位原件结构的振荡器性能,并在淮南张集煤矿井下进行实钻试验。结果表明:碟簧式水力振荡器在300 L/min流量时,最大压降1.9 MPa、激振力8.11 kN、频率13 Hz,适合安装在近钻头位置辅助减阻;圆柱弹簧式水力振荡器频率在300 L/min流量时,模拟测试150 m通缆定向管柱最大变形量2.86 mm,最大复位力7.98 kN,频率11 Hz,适合安装在钻柱中间主要减阻;在张集矿井下-600 m疏水巷10号孔定向钻进产生明显托压时使用圆柱弹簧式水力振荡器,使平均钻压降低33%,钻效提高126%,显著降低钻进摩阻,提高定向钻进效率。研制的ø89 mm小直径通缆水力振荡器为煤矿水平定向钻进中托压问题提供一种新的解决方法。  相似文献   

17.
为解决煤矿井下硬岩深孔滑动定向钻进过程中因钻柱托压效应引起的给进压力大、钻进效率低、钻孔深度受限等问题,提出了采用孔底水力加压方式提高钻头钻压的技术思路。通过借鉴石油钻井领域水力加压器结构并结合煤矿井下近水平孔钻进工况进行了孔底水力加压器结构设计,运用理论计算和数值模拟方法进行了水力参数设计。对样机进行了室内测试,测试结果表明,采用φ12 mm、φ13 mm、φ14 mm活塞水眼在流量200~450 L/min范围内输出轴向压力2~10 kN。在淮南张集矿进行了现场试验,并总结出了一套孔底水力加压和水力辅助加压工艺,试验结果表明,滑动定向钻进方式下钻孔深度由464 m顺利延伸至578 m,深孔钻进时最大钻效由之前托压孔段的1 m/h以下提高至3 m/h以上,试验进尺内平均给进表压较托压孔段降低了23.8%、平均钻效提高了137%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号