首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diurnal and semiannual variations in geomagnetic activity are considered. We prove that there exists an inner magnetospheric source of magnetic activity, which depends on the angle φ between the planes of the magnetotail plasma sheet and the geomagnetic equator. It is shown that diurnal and semiannual variations in magnetic activity result from changes in the value of this angle.  相似文献   

2.
Diurnal and seasonal variations of the geomagnetic AL index are studied. It is found in disturbed days that the mode of AL diurnal variation depends on the angle between the Sun–Earth line prolongation in the direction towards the magnetotail and the plane of geomagnetic equator; on quiet days, AL depends on the angle of attack between the geomagnetic axis and the Earth–Sun line. Seasonal AL variations are characterized by annual variations with summer maximum and semiannual variations with equinoctial maxima. It is shown that the semiannual AL variations can be described by a simplified model of plasma convection in the magnetotail based on a plasma electron cooling mechanism.  相似文献   

3.
The strength of the Sq current system is measured by taking the difference between magnetic variations on either side of the current system focus. This is carried out for several longitude sectors. A distinct semiannual variation is sometimes found but its incidence varies with longitude, local time and hemisphere. Other semiannual effects in the ionosphere are reviewed and the possibility of a diurnal modulation of the strength of the 12-h tide is suggested.  相似文献   

4.
本文通过对1960年以来全球磁纬度40°N至50°N内测高仪台站的观测数据进行研究,提取了电离层F2层临界频率(foF2)的潮汐,揭示了其变化特征及可能的形成原因.研究发现,周日和半日的迁移潮汐分量(即DW1和SW2)强度最大,并且显示出明显的年变化和半年变化.周日潮汐的3波分量(即DE3)作为典型的非迁移潮汐分量,相对较弱,显示出微弱的半年变化.在冬季,DW1和SW2与太阳活动指数(F107)呈现正相关性,其相关系数分别大于0.88和0.65.相反,在夏季,DW1和SW2与太阳活动指数呈现负相关性,特别是SW2,其相关系数在6月份达到-0.72.在相对于纬向均值的归一化处理之后,上述潮汐强度和太阳活动指数之间的正/负相关性被显著增强/削弱.其中,归一化后的夏季DW1和SW2与太阳活动指数的相关系数达到-0.8.更加深入的讨论显示出上传的大气潮汐波动可能是电离层潮汐除了太阳辐射之外的重要驱动源,并且这种驱动机制在SW2中更加强烈.  相似文献   

5.
We present the mean diurnal, seasonal and annual variations in TEC during the lowest solar activity phase from low latitude Indian zone recorded at Udaipur (Geog. Lat. 24.6°N, Geog. Long.73.7°E, Geomag. Lat. 15.6°N) using a GPS receiver. Seasonal variations in daytime TEC show a semiannual periodicity, with a minimum in winter. Results of seasonal variations have been compared with that of the IRI-2007 model. Model calculations reveal significant seasonal as well as longitudinal differences in TEC. Seasonal variations in the nighttime TEC reveal an annual periodicity. Near the crest of the EIA, TEC shows a very good correlation with the solar flux. The results also point to weakening of the anomaly crest as well as its spatial and temporal contraction with declining solar activity.  相似文献   

6.
Ionospheric data observed in 30 stations located in 3 longitude sectors (East Asia/Australia Sector, Europe/Africa Sector and America/East Pacific Ocean Sector) during 1974–1986 are used to analyse the characteristics of semiannual variation in the peak electron density of F2 layer (NmF2). The results indicate that the semiannual variation of NmF2 mainly presents in daytime. In nighttime, except in the region of geomagnetic equator between the two crests of ionospheric equatorial anomaly, NmF2 has no obvious semiannual variation. In the high latitude region, only in solar maxima years and in daytime, there are obvious semiannual variations of NmF2. The amplitude distribution of the semiannual variation of daytime NmF2 with latitude has a “double-humped structure”, which is very similar to the ionospheric equatorial anomaly. There is asymmetry between the Southern and the Northern Hemispheres of the profile of the amplitude of semiannual variation of NmF2 and longitudinal difference. A new possible mechanism of semiannual variation of NmF2 is put forward in this paper. The semiannual variation of the diurnal tide in the lower thermosphere induces the semiannual variation of the amplitude of the equatorial electrojet. This causes the semiannual variation of the amplitude of ionospheric equatorial anomaly through fountain effect. This process induces the semiannual variation of the low latitude NmF2.  相似文献   

7.
利用1988~1999年欧洲非相干散射EISCAT(European Incoherent Scatter)雷达观测数据,对不同太阳活动周相、不同季节的极光椭圆区电离层F区电子密度进行统计分析,研究其气候学特征,并与IRI 2001模式比较.EISCAT观测到的电子密度显示出显著的太阳活动高年“冬季异常”和太阳活动低年半年变化等现象.EISCAT实测电子密度随时间和高度的平均二维分布和500 km高度以下总电子含量TEC,从总体来看与IRI 2001模式预测结果符合较好.但高年在TEC达到最大值前后,IRI 2001模式预测的电子密度高度剖面与EISCAT观测结果有显著差别:F2峰以上IRI 2001模式预测的电子密度过大,造成TEC明显高于雷达观测值.另外,在太阳活动下降相,EISCAT观测显示出明显的半年周期季节变化特征,但IRI 2001模式未能预测出此下降相季节变化.  相似文献   

8.
The F-region peak electron densities NmF2 measured during daytime quiet geomagnetic conditions at low solar activity on January 22, 2008, April 8, 1997, July 12, 1986, and October 26, 1995, are compared. Ionospheric parameters are measured by the ionosonde and incoherent scatter radar at Millstone Hill and calculated with the use of a 1D nonstationary ionosphere–plasmasphere model of number densities and temperatures of electrons and ions at middle geomagnetic latitudes. The formation of the semiannual anomaly of the midlatitudinal NmF2 under daytime quiet geomagnetic conditions at low solar activity is studied. The study shows that the semiannual NmF2 anomaly occurs due to the total impact of three main causes: seasonal variations in the velocity of plasma drift along the geomagnetic field due to the corresponding variations in the components of the neutral wind velocity; seasonal variations in the composition and temperature of the neutral atmosphere; and the dependence of the solar zenith angle on a number of the day in the year at the same solar local time.  相似文献   

9.
电离层电场的半年变化对F2区峰值电子浓度的影响   总被引:4,自引:2,他引:2       下载免费PDF全文
利用一个电离层理论模式,模拟了太阳活动低年、地磁宁静情况下,中低纬和赤道地区电离层F2区峰值电子浓度(NmF2)的半年变化规律,重点讨论了电离层电场对NmF2半年变化的影响.模拟结果表明,当输入的电场没有周年和半年变化时,磁赤道地区电离层NmF2本身就具有一定的半年变化特征,而在稍高的纬度上,NmF2半年变化的强度较弱.当输入的电场具有一定的半年变化时,电离层NmF2的半年变化强度有明显的改变,且这种改变随地方时和地磁纬度不同有明显的差别.在地磁赤道附近的电离层赤道槽地区,从上午到午夜的时间内,具有半年变化的电场对电离层NmF2半年变化的强度是减弱的作用,在其他的时间内,电场对电离层NmF2半年变化强度是加强的作用.而在稍高纬度的电离层驼峰地区,情况明显不同.从上午一直到翌日日出前,具有半年变化的电场对电离层NmF2半年变化的幅度都是加强的作用.在其他的时间内,电场对电离层NmF2半年变化的幅度是减弱的作用.同时,研究表明电离层电场对NmF2半年变化的作用和“赤道喷泉”现象强烈相关.  相似文献   

10.
利用1960-1980年中国北京和广州的地磁场X分量小时值数据,根据徐文耀(1992)提出的用来描述每日Sq变化幅度的地磁活动指数的方法,计算并分析了Asq指数的周期变化特征.结果表明:Asq指数具有11年、年和半年变化等主要周期成分,与F107指数傅氏谱主要周期成分存在对应关系,表明Asq指数的周期变化与太阳辐射密切相关.然而互相关分析表明,日变幅dSq与F107的相关关系略强,这是由于Asq指数计算中每月平均ΔSq(t)携带了部分Sq场的周期变化信息.  相似文献   

11.
The present study is based on simultaneous measurements of the atmospheric electric potential gradient (PG) and Schumann resonances at Nagycenk station (Hungary) from 1993 to 1996. Annual and semiannual variations detected previously in the relative amplitudes of Schumann resonances (SR) in the first three modes are confirmed by the extended data series applied here. The regular annual variation found in the PG (with winter maximum and summer minimum) is in the opposite phase, compared to that of the SR amplitudes. Nevertheless, even the PG (being a parameter of the DC global circuit) occasionally shows a distinct secondary peak in summer as indicated by the results of the present analysis (and corresponding to a recent study on further parameters of the DC global circuit). In spite of the presumed dominance of local influence over the global one, a suitable PG parameter correlates well with SR (representing the AC global circuit) on the annual time scale. It also became evident that a semiannual variation (with spring and autumn maxima and winter and summer minima) is generally present in SR. Certain signatures of a semiannual variation have also been revealed in the PG, however, the phase of this semiannual variation does not fit the pattern shown by SR (and tropical surface air temperature, respectively). The representativeness of the PG data has also been checked by means of a single day’s diurnal variations displaying a phase corresponding to that of the ‘Carnegie Curve’. Additionally, the coincidence of short-term changes (lasting some hours) both in the SR and the PG parameter is also demonstrated on a day disturbed by local factors. The results are discussed in the context of correlations between surface air temperature and parameters of the atmospheric electric global circuit shown by previous studies.  相似文献   

12.
乌梁素海湖冰晴天反照率日变化具有双峰特征,利用当地太阳高度角同经纬度和儒历的关系,归一化到北京时,依此表达湖冰反照率日变化规律.基于具有指数函数形式的拉普拉斯、高斯、耿贝尔和柯西4种概率密度分布函数建立线性组合模型,对日出后到日落前太阳高度角大于5°时段内的反照率日变化数据进行拟合,发现拉普拉斯密度分布函数组合是最佳统计模型.它既能拟合太阳高度角大于5°时间范围内反照率日变化曲线的双峰特征,又能反映太阳高度角大于15°时间范围内反照率日变化曲线双峰之间的U型分布.该模型不仅形式简单,而且意义明确:尺度参数约为日长的一半,双峰位置与日出时刻关系密切;同时能体现2个反照率峰值的不对称性.为发展不同地区湖冰反照率日变化参数化方案奠定基础.  相似文献   

13.
使用COSMIC掩星提供的NmF2数据,利用傅里叶分析方法,研究全球F2层峰值电子密度的周年和半年分布特征,分析2010年LT12:00 14:00 NmF2周年和半年变化幅度及2008-2011年年平均值变化.结果显示,电离层NmF2周年和半年变化幅度在中高纬地区相对较大;在赤道和低纬地区相对较小,且NmF2以半年变化为主.太阳活动增强期间,NmF2年平均值增大.  相似文献   

14.
本文利用经验正交函数(Empirical Orthogonal Function,简称EOF)方法分析了Millstone Hill非相干散射雷达(Incoherent Scatter Radar,简称ISR)近三个太阳黑子周期(1976年2月~2006年4月)的实测电离层160~700 km的电子浓度剖面资料,并分别用Chapman-α函数拟合了平均电子浓度剖面和带有均值的前三阶EOF级数.结果表明:电子浓度剖面的EOF级数的第一阶项主要控制F2层峰值浓度NmF2,第二阶项同时控制F2层的峰高hmF2和等效标高Hm,第三阶项主要控制等效标高Hm.进一步分析了对应的EOF系数的周日变化、季节变化和太阳活动周期变化,这些变化反映了NmF2,hmF2,Hm的气候学变化规律,例如电离层的冬季异常、半年异常等.EOF方法在级数展开方面收敛速度快,很少数低阶项即能反映电子浓度剖面的主要变化,因此可用于提取出电子浓度剖面的主要分布特征及其周日变化与气候学变化特性,并可用于进一步构建相应的经验模式.  相似文献   

15.
f0F2 半年变化的特征和一种可能机制   总被引:6,自引:2,他引:6       下载免费PDF全文
利用东亚和澳大利亚扇区不同地磁纬度台站和两个极区台站1974-1986 年电离层垂直探测数据, 分析了f0F2 半年变化的主要特征. 提出了产生f0F2 半年变化的一种新的物理机制: 低热层日潮的半年变化, 引起赤道电急流幅度的半年变化, 通过 喷泉效应! 使得赤道电离层异常幅度产生半年变化, 从而形成f0F2 的半年变化.  相似文献   

16.
上海佘山地磁台位于中纬度地区,拥有逾百年的连续地磁场观测资料,非常有利于研究地磁活动的周期规律.本文利用该台站1908至2007年的100年磁暴记录,通过时序叠加、傅里叶分析和小波分析研究了磁暴的周期规律.结果表明:强磁暴具有显著的11年、22年和季节变化;弱中等磁暴没有明显的11年周期,并且季节变化的幅度较小.奇/偶太阳活动周相比,强磁暴的季节变化存在一定的差异,低年季节变化不明显,高年季节变化显著,并且偶数周的变化相对复杂.  相似文献   

17.
Semiannual and annual variations in the height of the ionospheric F2-peak   总被引:4,自引:0,他引:4  
Ionosonde data from sixteen stations are used to study the semiannual and annual variations in the height of the ionospheric F2-peak, hmF2. The semiannual variation, which peaks shortly after equinox, has an amplitude of about 8 km at an average level of solar activity (10.7 cm flux = 140 units), both at noon and midnight. The annual variation has an amplitude of about 11 km at northern midlatitudes, peaking in early summer; and is larger at southern stations, where it peaks in late summer. Both annual and semiannual amplitudes increase with increasing solar activity by day, but not at night. The semiannual variation in hmF2 is unrelated to the semiannual variation of the peak electron density NmF2, and is not reproduced by the CTIP and TIME-GCM computational models of the quiet-day thermosphere and ionosphere. The semiannual variation in hmF2 is approximately isobaric, in that its amplitude corresponds quite well to the semiannual variation in the height of fixed pressure-levels in the thermosphere, as represented by the MSIS empirical model. The annual variation is not isobaric. The annual mean of hmF2 increases with solar 10.7 cm flux, both by night and by day, on average by about 0.45 km/flux unit, rather smaller than the corresponding increase of height of constant pressure-levels in the MSIS model. The discrepancy may be due to solar-cycle variations of thermospheric winds. Although geomagnetic activity, which affects thermospheric density and temperature and therefore hmF2 also, is greatest at the equinoxes, this seems to account for less than half the semiannual variation of hmF2. The rest may be due to a semiannual variation of tidal and wave energy transmitted to the thermosphere from lower levels in the atmosphere.  相似文献   

18.
The data of the DMSP F7 spacecraft are used for studying the influence of the geomagnetic dipole tilt angle on the latitudinal position of auroral precipitation boundaries in the nighttime (2100–2400 MLT) and daytime (0900–1200 MLT) sectors. It is shown that, in the nighttime sector, the high-latitude zone of soft diffuse precipitation (SDP) and the boundary of the polar cap (PC) at all levels of geomagnetic activity are located at higher and lower latitudes relative to the equinox period in winter and summer, respectively. The position of boundaries of the diffuse auroral precipitation zone (DAZ) located equatorward from the auroral oval does not depend on the season. In the daytime sector, the inverse picture is observed: the SDP precipitation zone takes the most low-latitude and high-latitude positions in the winter and summer periods, respectively. The total value of the displacements from winter to summer of both the nighttime and daytime boundaries of the PC is ∼2.5°. A diurnal wave in the latitudinal position of the nighttime precipitation boundaries is detected. The wave is most pronounced in the periods of the winter and fall seasons, is much weaker in the spring period, and is almost absent in summer. The diurnal variations of the position of the boundaries are quasi-sinusoidal oscillations with the latitude maximum and minimum at 0300–0500 and 1700–2100 UT, respectively. The total value of the diurnal displacement of the boundaries is ∼2.5° of latitude. The results obtained show that, undergoing seasonal and diurnal variations, the polar cap is shifted as a whole in the direction opposite to the changes in the tilt angle of the geomagnetic dipole. The seasonal displacements of the polar cap and its diurnal variations in the winter period occur without any substantial changes in its area.  相似文献   

19.
The companion paper by Zou et al. shows that the annual and semiannual variations in the peak F2-layer electron density (NmF2) at midlatitudes can be reproduced by a coupled thermosphere-ionosphere computational model (CTIP), without recourse to external influences such as the solar wind, or waves and tides originating in the lower atmosphere. The present work discusses the physics in greater detail. It shows that noon NmF2 is closely related to the ambient atomic/molecular concentration ratio, and suggests that the variations of NmF2 with geographic and magnetic longitude are largely due to the geometry of the auroral ovals. It also concludes that electric fields play no important part in the dynamics of the midlatitude thermosphere. Our modelling leads to the following picture of the global three-dimensional thermospheric circulation which, as envisaged by Duncan, is the key to explaining the F2-layer variations. At solstice, the almost continuous solar input at high summer latitudes drives a prevailing summer-to-winter wind, with upwelling at low latitudes and throughout most of the summer hemisphere, and a zone of downwelling in the winter hemisphere, just equatorward of the auroral oval. These motions affect thermospheric composition more than do the alternating day/night (up-and-down) motions at equinox. As a result, the thermosphere as a whole is more molecular at solstice than at equinox. Taken in conjunction with the well-known relation of F2-layer electron density to the atomic/molecular ratio in the neutral air, this explains the F2-layer semiannual effect in NmF2 that prevails at low and middle latitudes. At higher midlatitudes, the seasonal behaviour depends on the geographic latitude of the winter downwelling zone, though the effect of the composition changes is modified by the large solar zenith angle at midwinter. The zenith angle effect is especially important in longitudes far from the magnetic poles. Here, the downwelling occurs at high geographic latitudes, where the zenith angle effect becomes overwhelming and causes a midwinter depression of electron density, despite the enhanced atomic/molecular ratio. This leads to a semiannual variation of NmF2. A different situation exists in winter at longitudes near the magnetic poles, where the downwelling occurs at relatively low geographic latitudes so that solar radiation is strong enough to produce large values of NmF2. This circulation-driven mechanism provides a reasonably complete explanation of the observed pattern of F2 layer annual and semiannual quiet-day variations.  相似文献   

20.
A new empirical atmospheric density model is developed using the CIRA72 (Jacchia 71) model as the basis for the diffusion equations. New solar indices based on orbit-based sensor data are used for the solar irradiances in the extreme and far ultraviolet wavelengths. New exospheric temperature and semiannual density equations are employed to represent the major thermospheric density variations. Temperature correction equations are also developed for diurnal and latitudinal effects, and finally density correction factors are used for model corrections required at high altitude (1500–4000 km). The new model, Jacchia–Bowman 2006, is validated through comparisons of accurate daily density drag data previously computed for numerous satellites. For 400 km altitude the standard deviation of 16% for the standard Jacchia model is reduced to 10% for the new JB2006 model for periods of low geomagnetic storm activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号