首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
根据模型和分布函数,本文首先依据多年平均气温、地温和SRTM等数据对研究区域冰缘地貌的分布范围进行分别提取,并利用遥感数据和人工解译方式对其进行了修正。在此基础上,采用一定指标,利用SRTM数据对冰缘地貌次级类型(如起伏度、海拔高度和坡度等)进行了提取,从而完成研究区域冰缘地貌信息的提取。研究结果表明:①研究区域冰缘地貌总面积约5.15×104km2,主要分布在研究区域的西北部和西南部,另外在东北部也有少量分布;通过提取,研究区域中最重要的冰缘地貌类型是冰缘作用的中起伏缓极高山,面积约0.82×104km2,分布范围较广。②冰缘地貌的分布与海拔高度、气温和地温等有密切的关系,基于此提取的结果可为冰缘地貌的解译提供一定的参考;由于青藏高原气象站点较少,数据精度较低,自动提取精度受到很大限制,因此进行人工解译修正是非常重要和必不可少的。  相似文献   

2.
长江中上游土壤自然侵蚀量及其估算方法   总被引:9,自引:2,他引:7  
景可  张信宝 《地理研究》2007,26(1):67-74
首先阐述了土壤侵蚀可分为自然侵蚀和人为加速侵蚀,自然侵蚀是自地球形成以来就普遍存在的一种自然现象;继而从夷平面、河流阶地、沉积盆地等侵蚀和堆积地貌形迹论述了第四纪以来长江中上游土壤自然侵蚀存在的佐证事实;在此基础上,依据侵蚀沉积相关原理,利用沉积物的厚度、面积和沉积时段分别计算了洞庭湖流域、鄱阳湖流域和古云梦泽流域全新世以来的自然侵蚀量,它们分别为264.2t/km2 · a、 312.5t/km2 · a和297.0t/km2 · a;同时,本文还辅以川西和三峡地区的对比实验小区资料,现代自然侵蚀量分别为342.0t/km2 · a、 75~270t/km2 · a佐证历史自然侵蚀量。长江上中游区域的自然侵蚀量介于264.0t/km2 · a ~342.0t/km2 · a之间。流域平均自然侵蚀量是现代侵蚀量的50%~60%之间;本研究成果有助于对长江中上游现代土壤侵蚀的属性、演变过程有一个科学的认识;同时可为生态保护、环境友好建设目标提供背景参照物。  相似文献   

3.
锦州湾滩地动力地貌特征及其冲淤变化   总被引:1,自引:0,他引:1  
本文阐述了锦州湾滩地动力地貌特征,海滩剖面形变,潮滩微地貌类型与横向分带性;并采用潮滩剖面重复水准测量、新老海图对比和210pb沉积速率测定等方法着重讨论了潮间浅滩和水下浅滩的冲淤变化。新老海图对比值为4-6mm/a,210pb沉积速率测定为1-5mm/a,湾内泥沙输沙量估算为2-4mm/a,三个量值基本接近。  相似文献   

4.
面积高度积分的面积依赖与空间分布特征   总被引:2,自引:0,他引:2  
面积高度积分作为揭示区域构造相对活动性的指标,其面积依赖和空间分布两大特性会影响到它对构造活动的解释。以北天山10条河流流域作为研究区域,研究表明,在不同集流面积阈值下,天山北麓流域次集水盆地的平均面积高度积分与平均面积、平均高差都具有负相关关系。受北天山褶皱逆断裂构造带的影响,流域面积高度积分值的分布与构造带走向相一致,上游山地型次集水盆地面积高度积分值大于中游山麓丘陵型次集水盆地面积高度积分,揭示了面积高度积分存在空间分布依赖的特性。在大小不同观测尺度下,构造活动和基岩岩性差异对面积高度积分有着不同的影响。在玛纳斯河流域中,以不同集流阈值提取的不同面积大小的次集水盆地与各年代地层以及活动构造做GIS叠加分析,可以发现当集流阈值小于9km2时,面积高度积分值受到岩性与构造的双重影响,而当集流阈值大于20km2时,面积高度积分值主要反映构造活动的影响。  相似文献   

5.
秦岭北麓断裂带晚第四纪活动的地貌表现   总被引:3,自引:0,他引:3  
侯建  柴宝龙 《地理学报》1995,50(2):138-146
本区地貌特征反映秦岭北麓断裂带的活动特点是:①第四纪以来主要发生垂直运动,其活动性质与程度有差异性、阶段性。第一、二级阶地的形态和年代资料表征秦岭北麓断裂带晚更新世和全新世垂直位错幅度和平均速率。②河流阶地在上升盘出口处高度大,而向上游逐渐减小,反映第四纪以来,秦岭断块山地继续发生由北向南的掀斜运动。③被断层切割的冲洪积扇体的结构和堆积层的产状特征,反映出山麓带多发育铲形断层。  相似文献   

6.
近期长江北支口门圆陀角附近潮滩地貌动态变化   总被引:2,自引:0,他引:2  
圆陀角位于长江北支岸线与江苏海岸线的交会处,独特的互花米草潮滩、淤泥质光滩环境和复杂的河海沉积动力,决定了潮滩地貌对海洋环境变化的响应具有敏感性。由于大规模的围垦,圆陀角附近过去40年来海岸线向东推进了6km。根据2006年以来多次的野外调查和室内粒度与钻孔岩芯的137Cs分析, 2006年以来圆陀角附近潮滩淤积明显加强,由137Cs时标估算的互花米草滩多年平均沉积速率为2.3cm/a, 2006~2008年观测到的互花米草滩淤积速率>4cm/a,粉砂淤泥质光滩的淤积速率更高;圆陀角风景区内互花米草滩前缘陡坎在风暴潮影响下侵蚀后退,并因粉砂淤泥质光滩的快速淤长而消亡,圆陀角附近潮滩地貌动态是对人类围垦活动、风暴潮与潮汐海洋动力的综合响应,互花米草与光滩快速淤积是近期圆陀角附近潮滩地貌演化的主要特点。  相似文献   

7.
陈志明 《地理学报》1993,48(2):105-113
该图以多层次表示法和表列式分解型图例,着重表现构造地貌为基础的内外力地貌成因、形态及其发展过程的基本规律。在内力方面,采用板块构造理论为指导,表现了构造地貌;外力方面,除表现传统的堆积成因形态类型外,辅以气候地貌的地带分异;而形态分类则利用DTM,对国土地形进行了基本形态要素的机助分析与制图,并引进地形起伏度概念,调整了传统的形态分类方案。通过项目研制,作者力求探讨一种符合现代地貌学理论,服务于科研、教学和国土整治的新型国家地貌图。  相似文献   

8.
基于氢氧同位素与水化学的潮白河流域地下水水循环特征   总被引:24,自引:1,他引:23  
为了研究变化环境下潮白河流域地下水水循环规律,通过现场调查,结合环境同位素及水化学应用,对潮白河流域浅层和深层地下水采样,测定其氢、氧环境同位素及水化学成分,通过分析其变化特征判明地下水的补给来源以及各含水层的相互联系。降水和地下水中的环境同位素δD和δ18O组成分析表明,降水是山前地下水的主要补给源,山区浅层地下水受蒸发影响非常强烈。水化学研究结果表明,山区地下水水质以 Ca2+和 HCO-3为主,属Ca2+-Mg2+-HCO-3型地下水。山前地下水类型为Ca2+-Mg2+-HCO-3、 Na+-K+-HCO-3、Mg2+-Ca2+-HCO-3和 Ca2+-Mg2+-Cl--SO2-4。平原区地下水为Mg2+, Na+和HCO-3。滨海冲积海积平原为Ca2+-Mg2+-HCO-3型和Ca2+-Mg2+-Cl--SO2-4型地下水。水化学分析证实了越流补给的存在。Ca2+ 和 HCO-3离子均呈山区高、山前和平原低、而滨海增高的趋势。沿潮白河流向地下水类型变化为:Ca2+-Mg2+-HCO-3 Na+=K+-HCO-3 Ca2+-Mg2+-HCO-3。  相似文献   

9.
位于柴达木盆地南缘的格尔木河发源于东昆仑山脉,末端注入盆地中东部的察尔汗盐湖,是该盐湖最主要的补给河流,极大地影响着该盐湖的成盐演化过程。格尔木河的主要支流——昆仑河和雪水河都是由冰川融水形成,因此,该流域内的冰川进退对河流径流量变化和谷地填充地层物源有着重要影响。该河流域内主要的填充地层为昆仑河砾岩(河流相)、纳赤台沟组(冲洪积相)和三岔河组(河湖相)。在三岔河组之上,发育了四/五级阶地,除最高的T5之外,其他均为以三岔河组为基底的内叠基座阶地。根据前人的研究,昆仑河砾岩沉积的年代为1269至1042 ka(ESR年龄);纳赤台沟组堆积于482至642 ka之间(ESR和TL年龄);三岔河组形成于355-95 ka(ESR和U系年龄)、90-16 ka(OSL年龄),T5-T1阶地基本形成于16- 4.6 ka之间。由于采用的测年方法不同,不同学者对三岔河组的形成时代存在争议,对阶地的划分也有所不同(四级或五级阶地)。但是对T5-T1阶地形成时代有较一致的观点,即末次冰消期和全新世早中期。对于格尔木河河流地貌过程的驱动因素,目前尚存在争论,大部分学者认为是气候变化驱动了该区域河流地貌的形成,但也有学者认为构造活动是主导因素。  相似文献   

10.
松嫩平原西部盐沼湿地水环境化学特征   总被引:10,自引:1,他引:9  
邓伟  何岩  宋新山  阎百兴 《地理研究》2000,19(2):113-119
松嫩平原西部盐沼湿地水环境碱化程度高,水中的pH值普遍高于8.0,多数为苏打钠型水。在对本区盐沼基本水环境化学特征阐述的基础上,通过对水化学的基本变量CO32-、HCO32-、Cl-、Ca2+、Mg2+、SO42-、Na+和派生变量(Cl-+SO42-)/HCO32-及Na+/(Ca2+ Mg2+)等的相关分析,得出各水化学变量之间的相关关系,并以pH值为分类基础得到了判别函数和判别区域图,对区域盐沼湿地水环境化学特征的研究方法作出了有意义的尝试。  相似文献   

11.
High resolution topographic data along fault zones are important aids in the delineation of recently active breaks. A 15 km-long portion of the south-central San Andreas Fault (SAF) along the southern Cholame segment contains well preserved tectonic landforms such as benches, troughs, scarps, and aligned ridges that indicate recurring earthquake slip. Recently acquired LiDAR topographic data along the entire southern SAF (“B4” project) have shot densities of 3–4 m− 2. Computed from the LiDAR returns, Digital Elevation Models (DEMs) of 0.25 to 0.5 m resolution using local binning with inverse distance weighting and 0.8 m or larger search radii depict the tectonic landforms at paleoseismic sites well enough to assess them confidently. Mapping of recently active breaks using a LiDAR-only based approach compares well with aerial photographic and field based methods. The fault zone varies in width from meters to nearly 1 km and is comprised of numerous en echelon meter to kilometer-length overlapping sub parallel fault surfaces bounding differentially moving blocks that elongate parallel to the SAF. The semantic variations of what constitutes “active” and the importance of secondary traces influence the breadth and complexity of the resulting fault trace maps.  相似文献   

12.
A light detection and ranging (LiDAR) survey was conducted in a densely built-up area to generate a high-resolution digital elevation model (DEM) to look for active faults. The urban district of Matsumoto City in central Japan is located in a 3-km2 basin along the Itoigawa–Shizuoka Tectonic Line active fault system, one of Japanese onshore fault systems with the highest earthquake probability. A high-resolution DEM at a 0.5-m-grid interval was obtained after removing the effects of laser returns from buildings, clouds and vegetation. It revealed a continuous scarp, up to ~ 2 m in height. Borehole data and archaeological studies indicate the scarp was formed during the most recent faulting event associated with historical earthquakes. In addition, the fault scarp strongly supports that the urban district is in a pull-apart basin related to a fault step-over between two left-lateral strike-slip faults. Consequently, accurate interpretation of fault geometry is crucial to provide estimates of future surface deformation and to allow modeling of basin structure and strong ground motion. Thus, the LiDAR mapping survey in urban districts is effective for detailed active fault mapping in order to constrain basin structure and to forecast the exact location of surface rupturing associated with large earthquakes.  相似文献   

13.
The Lake Izabal Basin in Guatemala is a major pull-apart basin along the sinistral Polochic Fault, which is part of the North American and Caribbean plate boundary. The basin infill contains information about the tectonic and sedimentological processes that have imparted a significant control on its sedimentary section. The inception of the basin has been linked to the relative importance of the Polochic Fault in the tectonic history of the plate boundary; yet, its sedimentological record and its inception age have been poorly documented. This study integrates diverse datasets, including industry reports, well logs and reports, well cuttings, vintage seismic data, outcrop observations and geochronological data to constrain the initial infill and age of inception of the basin. The integrated data show that during the Oligocene–Miocene, a marine carbonate platform was established in the region which was later uplifted and eroded in the early Miocene. The fluvial–lacustrine deposits above this carbonate platform are part of the initial infill of the basin and are constrained with zircon weighted-mean 206Pb/238U ages of 12.060 ± 0.008 from a volcanic tuff ~30 m above the unconformity. Sandstone, mudstone and coal dominate the interval from 12 to 4 Ma, with an increase in conglomerate correlating to the uplift of the Mico Mountains and San Gil Hill at 4 Ma. Fault switch activity between the Polochic and Motagua faults has been hypothesized to explain total offset along the Polochic Fault and the geologic and geodetic slip rates along the two faults. The 12 Ma age determined for the initial infill of the basin confirms this hypothesis. Consequently, our study confirms that at ~12 Ma the Polochic Fault served as the main fault of the plate boundary with inferred slip rates ranging from 13 to 21 mm/yr with a strong possibility that the Polochic Fault was, at some point between 15 Ma and 7 Ma, the only active fault of the plate boundary. The results of this study show that tectonic records preserved in sediments of strike-slip basins improve the understanding of the relative significance of individual faults and the implications with respect to strain partitioning throughout its tectonic history.  相似文献   

14.
The Zambapala Fault Zone (ZFZ) is located at the link between the offshore structures of the Gulf of Guayaquil and the Guayaquil Caracas Megashear (GCM) that accommodates the northeastward motion of the North Andean Block. We use morphological observations of drainage offset to assess the active motion of the Zambapala Fault. The relation between the horizontal offset amount D of the stream channel and the upstream length L from the offset segment, and offset of beach morphology provide a measurement of the average slip rate of the motion of the fault to an accuracy of a fraction of millimeters per year. The drainage network is short, running down the southeastern slopes of the Zambapala Cordillera (297 m), a Quaternary dome uplifted along a positive flower structure. We measure the D (drainage offset along the fault)/L (drainage length from the fault) relation for the upper and more recent part of the drainage network. The relation suggests that the fault is active at present. Capture occurs along the middle slopes and channel straightening near the littoral plain, hiding part or most of the fault offset. The fault trace crosses the littoral plain, showing 35–40 m offset of the inner beach ridge, and delimiting variations of the beach morphology. The attribution of a maximum age of 5000–6000 years to the oldest beach ridge (the postglacial transgression) allows us to calculate a minimal mean slip rate of 5.8–8 mm year−1. This result confirms that the Guayaquil Caracas Megashear extends to the Gulf of Guayaquil through the Zambapala Fault Zone, which accommodate at least 60–80% of the slip motion of the Guayaquil Carcas Megashear.  相似文献   

15.
The eastern and western fronts of plate movement in Taiwan Island and Tibetan Plateau respectively are the two major sources of tectonic force for the morphogensis during Quaternary in China’s tropics. Seven examples of geomorphological effects of plate movement are enumerated to discuss the differentiation of tectonic landforms in space and time during Quaternary. The tectonic movement tends to be more active since middle Pleistocene. Some phenomena such as the arc-shape mountain systems, volcanism and crustal deformation imply that the juncture zone of eastern and western tectonic forces is located at about 110°E.  相似文献   

16.
A moderate earthquake of   M w= 6.8  occurred on 2003 December 10. It ruptured the Chihshang Fault in eastern Taiwan which is the most active segment of the Longitudinal fault as a plate suture fault between the Luzon arc of the Philippine Sea plate and the Eurasian plate. The largest coseismic displacements were 13 cm (horizontal) and 26 cm (vertical). We analyse 40 strong motion and 91 GPS data to model the fault geometry and coseismic dislocations. The most realistic shape of the Chihshang fault surface is listric in type. The dipping angle of the seismic zone is steep (about 60°–70°) at depths shallower than 10 km and then gradually decreases to 40°–50° at depths of 20–30 km. Thus the polygonal elements in Poly3D are well suited for modelling complex surfaces with curving boundaries. Using the strong motion data, the displacement reaches 1.2 m dip-slip on the Chihshang Fault and decreases to 0.1 m near surface. The slip averages 0.34 m, releasing a scalar moment of 1.6E26 dyne-cm. For GPS data, our model reveals that the maximal dislocation is 1.8 m dip-slip. The dislocations decrease to 0.1 m near the surface. The average slip is 0.48 m, giving a scalar moment of 2.2E26 dyne-cm. Regarding post-seismic deformation, a displacements of 0.5 m were observed near the Chihshang Fault, indicating the strain had not been totally released, as a probable result of near-surface locking of the fault zone.  相似文献   

17.
New estimates on the Quaternary slip rate of the active transform margin of North Anatolia are provided. We investigated the area struck by a Mw 7.1 earthquake on the 12th of November 1999 that ruptured the Düzce Fault segment of the North Anatolian Fault. In order to analyze the spectacular tectonically driven cumulative landforms and the drainage pattern settings, we carried out a 1:25,000-scale geological and geomorphological mapping along the fault trace. We reconstruct and describe, as offset geomorphic markers, right-hand stream deflections and fluvial terraces inset into alluvial fan deposits. Radiocarbon dating indicates that  100 m stream deflections were built up by the last  7000 yrs of fault activity. Conversely, two documented and correlated Late Pleistocene fluvial terraces are horizontally offset by  300 and  900 m, respectively. These were dated by means of Optically Stimulated Luminescence (OSL) to  21 ka BP and 60 ka BP. Assuming a constant rate of deformation for the Düzce Fault, ages and related offsets translate to consistent slip rates that yield an average slip rate of 15.0 ± 3.2 mm/yr for the last 60 ka. Thus, the Düzce Fault importantly contributes to the North Anatolian margin deformation, suggesting a present-day partitioning of displacement rates with the Mudurnu Fault to the south and confirming its important role in the seismic hazard of the area.  相似文献   

18.
Two end-members characterize a continuum of continental extensional tectonism: rift settings and highly extended terrains. These different styles result in and are recorded by different extensional basins. Intracontinental rifts (e.g. East Africa, Lake Baikal) usually occur in thermally equilibrated crust of normal thickness. Rift settings commonly display alkali to tholeiitic magmatism, steeply dipping (45–60°) bounding faults, slip rates <1 mm yr-1 and low-magnitude extension (10–25%). Total extension typically requires > 25 Myr. The fault and sub-basin geometry which dominates depositional style is a half-graben bounded by a steeply dipping normal fault. Associated basins are deep (6–10 km), and sedimentation is predominantly axial- or hangingwall-derived. Asymmetric subsidence localizes depocentres along the active basin-bounding scarp. Highly extended continental terrains (e.g. Colorado River extensional corridor, the Cyclade Islands) represent a different tectonic end-member. They form in back-arc regions where the crust has undergone dramatic thickening before extension, and usually reactivate recently deformed crust. Volcanism is typically calc-alkalic, and 80–90% of total extension requires much less time (<10 Myr). Bounding faults are commonly active at shallow dips (15–35°); slip rates (commonly > 2 mm yr-1) and bulk extension (often > 100%) are high. The differences in extension magnitude and rate, volcanism, heat flow, and structural style suggest basin evolution will differ with tectonic setting. Supradetachment basins, or basins formed in highly extended terrains, have predominantly long, transverse drainage networks derived from the breakaway footwall. Depocentres are distal (10–20 km) to the main bounding fault. Basin fill is relatively thin (typically 1–3 km), probably due to rapid uplift of the tectonically and erosionally denuded footwall. Sedimentation rates are high (? 1 m kyr-1) and interrupted by substantial unconformities. In arid and semi-arid regions, fluvial systems are poorly developed and alluvial fans dominated by mass-wasting (debris-flow, rock-avalanche breccias, glide blocks) represent a significant proportion (30–50%) of basin fill. The key parameters for comparing supradetachment to rift systems are extension rate and amount, which are functions of other factors like crustal thickness, thermal state of the lithosphere and tectonic environment. Changes in these parameters over time appear to result in changes to basin systematics.  相似文献   

19.
The eastern and western fronts of plate movement in Taiwan Island and Tibetan Plateau respectively are the two major sources of tectonic force for the morphogensis during Quaternary in China’s tropics. Seven examples of geomorphological effects of plate movement are enumerated to discuss the differentiation of tectonic landforms in space and time during Quaternary. The tectonic movement tends to be more active since middle Pleistocene. Some phenomena such as the arc-shape mountain systems, volcanism and crustal deformation imply that the juncture zone of eastern and western tectonic forces is located at about 110oE.  相似文献   

20.
China'stropicsliesintheregionsouthofabout24oN,occupyinganareaofabout51.85×104km2(5.4%ofChina).InChina,thistropicalregionisquiteclosetotheeasternandwesternconvergentboundariesbetweentwoplatessothatthegeomorphologicaleffectsofplatetectonicsaremoreobviousthanthoseinnorthernChina.Thisstudywillpresentsevenexamplesofappearanceofplatemovementingeomorphology.1ThesourceoftectonicforceTheregionofChina'stropicsundergoesconvergingattackfromeasternandwestern"fronts"ofplatemovement.Thewesternfrontofther…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号