首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data are presented from several experiments in the freshwater-saltwater interface (FSI) region of the Tamar Estuary. Longitudinal surveys of salinity and suspended particulate matter (SPM) at high water showed that the location of the FSI could be predicted in terms of a power-law regression with freshwater runoff. Longitudinal transects also were surveyed over periods of several hours. The FSI was observed to advect into the region on the flood with strong vertical mixing. After high water, stratification became intense as fresher water ebbed in the surface layers. The near-bed water in the stratified region began to ebb between 2 h and 3 h before low water. A model of the vertical structure of longitudinal currents showed that the enhanced stratification on the ebb, coupled with the longitudinal density gradient, partly produced this long period of slack, near-bed currents following high water. A strong turbidity maximum (TM) occurred during spring tides and was located slightly up-estuary of the FSI at high water. Longitudinal transects during a period of low freshwater runoff and large neap tide showed that at the start of the flood the TM was associated with the FSI region. As the FSI advected up-estuary on the flood there was considerable resuspension of sediment at the FSI. Some of this SPM moved with the FSI and reached the limit of saline intrusion, where it formed a slowly-eroding TM as particles settled during the long, high-water slack period. As the near-bed currents increased on the ebb and the FSI moved down-estuary, strong vertical mixing and resuspension of recently deposited sediment occurred in the unstratified water behind the FSI and the associated TM advected down-estuary. Additional effects were present with stronger tides and increased runoff.  相似文献   

2.
为进一步认识径流型河口枯季盐水上溯距离变化的影响因素及其作用机制,将实际河口简化并在不同径流量下分别用等潮差正弦潮和主要分潮驱动,进行盐水三维数值模拟试验。结果表明:随着径流和潮汐两大基本作用的相对强度不同,平衡态下盐水形态和位置自动调整并最终达到盐输运平衡,径流量小于3 000 m3/s且潮差小于2 m时,最大上溯距离随潮差的变化规律在不同径流量下存在明显差别;大小潮半月周期内盐水呈现非平衡态,非强混合时潮周期盐水上溯最大距离围绕平衡态随潮差呈顺时针绳套关系变化。径流导致的密度环流作用和潮汐的混合作用交织,两者相互影响并协同发展,两种作用相对强度的不同是导致径流型河口盐水上溯距离变化显著的主导因素。  相似文献   

3.
We describe the tidal circulation and salinity regime of a coastal plain estuary that connects to the ocean through a flood tide delta. The delta acts as a sill, and we examine the mechanisms through which the sill affects exchange of estuarine water with the ocean. Given enough buoyancy, the dynamics of tidal intrusion fronts across the sill and selective withdrawal (aspiration) in the deeper channel landward appear to control the exchange of seawater with estuarine water. Comparison of currents on the sill and stratification in the channel reveals aspiration depths smaller than channel depth during neap tide. During neap tide and strong vertical stratification, seawater plunges beneath the less dense estuarine water somewhere on the sill. Turbulence in the intruding bottom layer on the sill promotes entrainment of fluid from the surface layer, and the seawater along the sill bottom is diluted with estuarine water. During ebb flow, salt is effectively trapped landward of the sill in a stagnant zone between the aspiration depth and the bottom where it can be advected farther upstream by flood currents. During spring tide, the plunge point moves landward and off the sill, stratification is weakened in the deep channel, and aspiration during ebb extends to the bottom. This prevents the formation of stagnant water near the bottom, and the estuary is flooded with high salinity water far inland. The neapspring cycle of tidal intrusion fronts on flood coupled with aspiration during ebb interacts with the sill to play an important role in the transport and retention of salt within the estuary.  相似文献   

4.
Bertioga Channel is a partially mixed (type 2) tidal estuary on the coastal plain of São Paulo, Brazil. Hourly current and salinity measurements during neap and spring tides in July 1991 yielded information about the physical structure of the system. Peak along-channel velocities varied from 40 cm s?1 to 60 cm s?1 during flood tides and from 70 cm s?1 to 100 cm s?1 during ebb tides. Net vertical velocity profiles indicate that the net current reverses directions at a depth of 2.5–3.0 m in the halocline. Due to appreciable fortnightly tidal modulation, the estuary alternates from being highly stratified (type 2b) during neap tides, with advection and diffusion contributing equally to the net upstream salt flux, to being moderately stratified (type 2a) during spring tides, when 90% of the net upstream salt transport is the result of effective tidal diffusion. Decomposition of the salt flux indicates that the relative contribution to the upstream salt transport by gravitational circulation shear is greater than the oscillatory tidal flux by a factor of 2.6 during neap tides. The oscillatory tidal flux is generated by the correlation of the tidal components of the u-velocity and salinity and is responsible for approximately the same amount of upstream salt transport, during neap and spring tides. However, during spring tides, this oscillatory term is greater than the other salt flux terms by a factor of 1.4. The total salt transport, through a unit width of the section perpendicular to the flow, was within 2% of the sum of the seven major decomposed, advective and dispersive terms. On the assumption that the Bertioga Channel is laterally homogeneous, the results also indicate that the estuary is not in steady state with respect to salt flux.  相似文献   

5.
Toward a unified theory of tidally-averaged estuarine salinity structure   总被引:2,自引:0,他引:2  
Equations are developed for the tidally-averaged, width-averaged estuarine salinity and circulation in a rectangular estuary. Width and depth may vary along the length of the channel, as may coefficients of vertical turbulent mixing and along channel diffusion. The system is reduced to a single first-order, nonlinear, ordinary differential equation governing the section-averaged salinity. A technique for specifying the ocean boundary condition is given, and solutions are found by numerical integration. Under different assumptions for the diffusion it is possible to reproduce the few existing analytical solutions, in particular the Hansen and Rattray (1965) Central Regime solution, and Chatwin's (1976) solution. The mathematical framework allows easy comparison of the results of different channel geometries and mixing coefficients. Of particular interest is the along-channel distribution of the diffusive fraction of up-estuary salt flux. It is shown that the Hansen and Rattray solution is always diffusion-dominated near the mouth. A theory is presented for estimating the diffusion coefficient within a tidal excursion of the mouth. It is shown that the resulting rapid along-channel increase of diffusion may explain some observed patterns of salinity structure: a decrease in both stratification and along-channel salinity gradient near the mouth. The theory is applied to the Delaware Estuary and Northern San Francisco Bay, and shows reasonable agreement with observed sensitivities of salt intrusion distance to river flow.  相似文献   

6.
A 3-D coastal ocean model with a tidal turbine module was used in this paper to study the effects of tidal energy extraction on temperature and salinity stratification and density-driven two-layer estuarine circulation. Numerical experiments with various turbine array configurations were carried out to investigate the changes in tidally averaged temperature, salinity, and velocity profiles in an idealized stratified estuary that connects to coastal water through a narrow tidal channel. The model was driven by tides, river inflow, and sea surface heat flux. To represent the realistic size of commercial tidal farms, model simulations were conducted based on a small percentage (less than 10 %) of the total number of turbines that would generate the maximum extractable energy in the system. Model results show that extraction of tidal in-stream energy will increase the vertical mixing and decrease the stratification in the estuary. Installation of in-stream tidal farm will cause a phase lag in tidal wave, which leads to large differences in tidal currents between baseline and tidal farm conditions. Extraction of tidal energy in an estuarine system has stronger impact on the tidally averaged salinity, temperature, and velocity in the surface layer than the bottom layer even though the turbine hub height is close to the bottom. Finally, model results also indicate that extraction of tidal energy weakens the two-layer estuarine circulation, especially during neap tides when tidal mixing is weakest and energy extraction is smallest.  相似文献   

7.
A local, one-dimensional, depth-dependent model is used in conjunction with a one-dimensional, longitudinal, hydrodynamical model to examine the mechanisms affecting yertical profiles of longitudinal residual current in the macrotidal (tidal range typically exceeds 4 m during spring tides), partly-mixed Tamar Estuary. Residual currents are simulated at a deep (15m) station in the lower reaches, which possesses a small tidal amplitude to depth ratio and a nonzero salinity throughout the tidal cycle, as well as at a shallow station in the upper reaches, which varies in depth from 1 m at low water, when salinity is zero, to 5 m at high water. A slow, up-estuary current dominates the residual circulation just beneath the high-water level at the deeper station. Further down the water column a down-estuary residual current develops which is the near-surface component of a two-layer gravitational circulation. The up-estuary component of this gravitational circulation occurs deeper in the column and extends to the bed at the deep station, whereas at the shallow station it is eventually dominated by a down-estuary current in the bottom 1 m. Simulated residual currents are fairly insensitive to estuary-bed slope and to observed depth variations in longitudinal density gradient. Residual current profiles of the observed form can only be generated by a longitudinal density gradient. The reduction in vertical eddy viscosity by water column stability due to stratification is an essential requirement for producing a strong gravitational circulation of the observed magnitude. Stratification at the shallow station is much higher during the ebb than during the flood and this asymmetry enhances the gravitational circulation in the upper reaches. The formation of residual flows at both stations is illustrated by showing time-series data over a tidal cycle for the simulated current profiles.  相似文献   

8.
杭州城市供水85%取自钱塘江河口段,取水水质在枯水大潮期都不同程度地受到盐水入侵的威胁,分析钱塘江河口盐水入侵时空变化及研制二维数值预测模型对保障城市供水安全十分必要。根据钱塘江河口段实测水文氯度资料,分析了强潮作用下盐水入侵的时空变化特征;据此构建考虑斜压作用的二维水流、盐度输移的耦合数学模型,计算格式采用守恒性较好的有限体积法;在模型验证的基础上,数值分析了径流和潮汐对钱塘江河口段盐水入侵的影响,结果表明河口段的盐水入侵明显地受径流和潮汐的影响,据此可通过增大上游新安江水库的下泄流量抑制盐水入侵上溯以减小取水口氯度及超标时间,确保用水安全。  相似文献   

9.
Turnagain Arm is a macrotidal fjord‐style estuary. Glacier Creek is a small, glacially fed stream which enters the estuary tangentially near Girdwood, Alaska. Trenches and daily sedimentation measurements were made in a mudflat along the fluvio–estuarine transition of Glacier Creek during several summers since 2003. Each year, the flats appear to erode during the winter and then accrete vertically in the spring and summer. In each of the years studied, tidal laminae in vertically thickening and thinning laminae bundles were deposited by twice daily tides in neap–spring tidal cycles. In 2004, bundles of thickening and thinning laminae couplets were noted in trenches cut into the flats. Five laminae bundles alternated between thicker and thinner bundles, corresponding to the perigean (high spring) and apogean (low spring) tides. Well‐preserved apogean–perigean cycles have rarely been documented in modern tidal flat sediments. At this location, vertical accretion of tidal rhythmites with well‐developed neap–spring cyclicity is possible because of the near‐complete removal of the flat from the previous year, which creates accommodation space for vertical accretion without significant reworking. Macrotidal conditions, no reworking by infaunal invertebrates, protection from the main tidal channel by a gravel bar and protection from storm waves and fluvial erosion by a recess in the sedge marsh that surrounds the flats all aid in preservation of rhythmites during aggradation. The position of the flats relative to tidal range allows for accumulation of complete spring cycles and incomplete neap cycles. In the summer of 2004, apogee and perigee were closely aligned with the new and full moons, resulting in successive strong perigee and apogee tides which probably aided in the accumulation of successive thick–thin spring cycles encoding the apogean and perigean tidal cycle. The apogean–perigean signal was not observed in subsequent years.  相似文献   

10.
A one-dimensional, hydrodynamical model of the Tamar Estuary shows good agreement with measured tidal elevations and currents. Computed currents are used to drive a one-dimensional moving-element model of the salt balance. The moving-element model overcomes the numerical difficulties associated with strong tidal advection. Axial distributions of salinity at high water, computed using the moving-element model, compare well with measurements. The modelled and observed high water salinity distributions in this macrotidal estuary show little dependence on tidal range. The major variability in salinity is due to runoff. This strong and rapid dependence on runoff is a consequence of short residence (or flushing) times. Typically, residence times are less than one day throughout the year in the upper 10 km of estuary. The residence times maximize in summer, reaching 14 d for the whole estuary. During high runoff winter periods residence times are less than 5 d. Mixing coefficients for the moving-element salinity model are deduced from salinity measurements. Dispersion coefficients at fixed locations along the estuary are deduced from solutions of the salinity model. The spatially-averaged coefficients at mean spring and neap tides are 180 and 240 m2 s?1, respectively, for average runoff. Therefore, spring-neap variations in dispersion are fairly small and show a negative correlation with tidal range. The spatially-averaged dispersion coefficients at mean tides vary from 150 to 300 m2 s?1 for typical summer and winter runoff, respectively. The increase in dispersion with runoff and the decrease with tidal range implies that buoyancy-driven currents generate an important component of the shear dispersion in this estuary.  相似文献   

11.
The Gamtoos is a shallow flood-tidal estuary located on the south coast of South Africa. Even though it has an extensive catchment area, dams limit runoff and mean freshwater inflow is estimated at less than 1 m3 s?1, and the flood tidal deltas constrict and at times even close the mouth. The results presented here derive from an intensive measurement program carried out over a 3-wk period at the end of 1992, immediately after good rains in the Gamtoos catchment region. Freshwater inflow increased to more than 10 m3 s?1, driving the salt wedge downstream and resulting in intense haloclines in the mid-estuary region. The program monitored the return to more average estuarine structures, and even though tidal exchange was restricted, marked differences occurred in stratification at neap and spring tides; tidal exchanges provided the dominant mixing forces. It is found that the shallower upper reaches of the estuary are flushed with relatively small increases in freshwater inflow, though a balance exists with the tidal exchanges through the constricted mouth. The variation in the position of the salt wedge and in the salinity stratification can have substantial implications for biota.  相似文献   

12.
This research investigates the dynamics of the axial tidal flow and residual circulation at the lower Guadiana Estuary, south Portugal, a narrow mesotidal estuary with low freshwater inputs. Current data were collected near the deepest part of the channel for 21 months and across the channel during two (spring and neap) tidal cycles. Results indicate that at the deep channel, depth-averaged currents are stronger and longer during the ebb at spring and during the flood at neap, resulting in opposite water transport directions at a fortnightly time scale. The net water transport across the entire channel is up-estuary at spring and down-estuary at neap, i.e., opposite to the one at the deep channel. At spring tide, when the estuary is considered to be well mixed, the observed pattern of circulation (outflow in the deep channel, inflow over the shoals) results from the combination of the Stokes transport and compensating return flow, which varies laterally with the bathymetry. At neap tide (in particular for those of lowest amplitude each month), inflows at the deep channel are consistently associated with the development of gravitational circulation. Comparisons with previous studies suggest that the baroclinic pressure gradient (rather than internal tidal asymmetries) is the main driver of the residual water transport. Our observations also indicate that the flushing out of the water accumulated up-estuary (at spring) may also produce strong unidirectional barotropic outflow across the entire channel around neap tide.  相似文献   

13.
磨刀门水道盐度混合层化机制   总被引:3,自引:0,他引:3  
基于Simpson方法和磨刀门水道2009年枯季水文实测资料,选取上、下游两个站位的径流层化、潮汐混合、风致扰动3个影响河口水体分层的主要因素进行盐度混合的层化机制分析。研究表明:由于M1站位处上游,径流作用相对占优,分层不明显,只在涨潮急流时出现微弱的盐度分层;M2站则水体分层明显,小潮期间径流作用占主导,水体呈持续性分层,当由小潮转为中潮后,潮流作用增强,出现周期性分层现象,大潮以后,由于上游径流增加,潮流与径流作用相当,仍为周期性分层,但分层有所加强。层化的发育程度依赖径流致层化作用与潮汐、风致混合作用的博弈。  相似文献   

14.
Optical in situ chemical sensors enable sampling intervals and durations that rival acoustic techniques used for measuring currents. Coupling these high-frequency biogeochemical and physical measurements in estuaries to address ecosystem-scale questions, however, is still comparatively novel. This study investigated how tides affect ecosystem metabolism in a mesotidal estuary in central California (Elkhorn Slough). Dissolved oxygen measurements were used to estimate the terms in a control volume budget for a tidal creek/marsh complex at tidal timescales over several weeks. Respiration rates were 1.6 to 7.3 g O2 m?2 day?1; net community production approached 20 g O2 m?2 day?1. We found that aquatic NCP integrated throughout the creek complex varied significantly over the spring-neap cycle. The intertidal contribution to aquatic metabolism was net heterotrophic during spring tides and generally in balance during neap tides because spring-tide marsh inundation was limited to nighttime, and therefore the marsh could not contribute any primary production to the water column. At the estuary scale, the fortnightly export of oxygen from the main channel to the intertidal was largely balanced by an advective flux up-estuary.  相似文献   

15.
磨刀门河口环流与咸淡水混合层化机制   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究磨刀门盐水混合层化特征,基于SCHISM模型,建立了三维盐度数值模型,根据实测资料对其进行验证。结合水体势能异常理论,对枯季磨刀门河口混合层化的时空变化特征及深槽与浅滩的层化机制差异进行分析。结果表明:磨刀门河口小潮时水体层化最强,中潮时水体层化最弱,且拦门沙至挂定角段水体层化始终较强。磨刀门深槽水体层化主要受纵向平流、纵向水深平均应变和垂向混合影响,而浅滩水体层化则受横向平流、横向水深平均应变和垂向混合影响;磨刀门河口表、底层水体湍动能耗散率较高,而中间水层存在低耗散区,且涨潮时湍动能耗散率比落潮时大。  相似文献   

16.
Hydrographic patterns and chlorophyll concentrations in the Columbia River estuary were compared for spring and summer periods during 2004 through 2006. Riverine and oceanic sources of chlorophyll were evaluated at stations along a 27-km along-estuary transect in relation to time series of wind stress, river flow, and tidal stage. Patterns of chlorophyll concentration varied between seasons and years. In spring, the chlorophyll distribution was dominated by high concentrations from freshwater sources. Periods of increased stream flow limited riverine chlorophyll production. In summer, conversely, upwelling winds induced input of high-salinity water from the ocean to the estuary, and this water was often associated with relatively high chlorophyll concentrations. The frequency, duration, and intensity of upwelling events varied both seasonally and interannually, and this variation affected the timing and magnitude of coastally derived material imported to the estuary. The main source of chlorophyll thus varied from riverine in spring to coastal in summer. In both spring and summer seasons and among years, modulation of the spring/neap tidal cycle determined stratification, patterns of mixing, and the fate of (especially freshwater) phytoplankton. Spring tides had higher mixing and neap tides greater stratification, which affected the vertical distribution of chlorophyll. The Columbia River differs from the more tidally dominated coastal estuaries in the Pacific Northwest by its large riverine phytoplankton production and transfer of this biogenic material to the estuary and coastal ocean. However, all Pacific Northwest coastal estuaries investigated to date have exhibited advection of coastally derived chlorophyll during the upwelling season. This constitutes a fundamental difference between Pacific Northwest estuaries and systems not bounded by a coastal upwelling zone.  相似文献   

17.
李彬  孔俊  叶荣辉  李保  罗锋 《水文》2022,42(1):67-74+10
基于MIKE3研究扰动底层盐水楔实现抑制咸潮上溯的最优化方案。结果表明,在河道底部喷水扰动盐水楔可以有效减弱底层盐水浓度,且存在最优喷水流量与最优喷水点。当喷水流量小于该值时,咸潮上溯距离随流量的增大而减小,当大于该值时,咸潮上溯距离随流量的增大反而会增大;最优喷水流量从小潮到大潮逐渐增加,且随着径流量的增大而减小,如径流量为500 m/s~3时,小、中、大潮期间的最优喷水流量分别为20 m/s~3、20 m/s~3和25 m/s~3,减少的咸潮上溯距离分别为3.82 km、3.40 km和1.18 km。随着径流量增大,取得最佳抑咸效果的最优喷水点位置逐渐向下游移动。针对珠江河口的特殊径潮环境,盐水楔扰动的抑咸效果在小潮和中潮期间较好,在大潮期间相对较差。  相似文献   

18.
Tidal currents and the spatial variability of tidally-induced shear stress were studied during a tidal cycle on four intertidal mudflats from the fluvial to the marine part of the Seine estuary. Measurements were carried out during low water discharge (<400 m3 s−1) in neap and spring tide conditions. Turbulent kinetic energy, covariance, and logarithmic profile methods were used and compared for the determination of shear stress. The cTKE coefficient value of 0.19 cited in the literature was confirmed. Shear stress values were shown to decrease above mudflats from the mouth to the fluvial part of the estuary due to dissipation of the tidal energy, from 1 to 0.2 N m−2 for spring tides and 0.8 to 0.05 N m−2 for neap tides. Flood currents dominate tidally-induced shear stress in the marine and lower fluvial estuary during neap and spring tides and in the upper fluvial part during spring tides. Ebb currents control tidally-induced shear stress in the upper fluvial part of the estuary during neap tides. These results revealed a linear relationship between friction velocities and current velocities. Bed roughness length values were calculated from the empirical relationship given by Mitchener and Torfs (1996) for each site; these values are in agreement with the modes of the sediment particle-size distribution. The influence of tidal currents on the mudflat dynamics of the Seine estuary was examined by comparing the tidally-induced bed shear stress and the critical erosion shear stress estimated from bed sediment properties. Bed sediment resuspension induced by tidal currents was shown to occur only in the lower part of the estuary.  相似文献   

19.
The mechanisms responsible for the modulation of laterally sheared non-tidal (residual) exchange flow in a subtropical inlet, with special emphasis on tropical storm influence, are studied using a combination of current velocity profiles and hydrographic and meteorological data. The mouth of the inlet, St. Augustine Inlet in northeast Florida, is characterized by a 15-m-deep channel flanked by shoals (<6 m deep). Residual flows across the inlet mouth were laterally sheared with inflow in the channel and outflow over the shoals. This pattern persisted during four separate semi-diurnal tidal cycle surveys effected over 3 years. During spring tides, residual exchange flows intensified relative to neap tides. Residual inflow in the channel only reversed immediately after tropical storms because of their extreme winds and major temporal changes in water level. After the residual flow reversed in the channel, along-channel baroclinicity drove gravitational circulation that persisted for 4.5 days and was enhanced by offshore winds. A depth-averaged along-basin momentum budget highlighted the importance of bottom friction to help balance the barotropic pressure gradient. The rest of the momentum budget was likely provided by advective terms. During and after tropical storms, accelerations from wind stress and baroclinic pressure gradients also became influential in the along-basin momentum budget.  相似文献   

20.
Buoyancy input as fresh water exerts a stratifying influence in estuaries and adjacent coastal waters. Predicting the development and breakdown of such stratification is an inherently more difficult problem than that involved in the analogous case of stratification induced by surface heating because the buoyancy input originates at the lateral boundaries. In the approach adopted here, we have adapted the energy considerations used in the surface heating problem to describe the competition between the stabilizing effect of fresh water and the vertical mixing brought about by tidal and wind stirring. Freshwater input induces horizontal gradients which drive the estuarine circulation in which lighter fluid at the surface is moved seaward over heavier fluid moving landward below. This contribution to stratification is expected to vary in time as the level of turbulence varies over the tidal cycle. The density gradient also interacts directly with the vertical shear in the tidal current to induce a periodic input to stratification which is positive on the ebb phase of the tide. Comparison of this input with the available stirring energy leads to a simple criterion for the existence of strain-induced stratification. Observations in a region of Liverpool Bay satisfying this criterion confirm the occurrence of a strong semidiurnal variation in stratification with complete vertical mixing apparent around high water except at neap tides when more permanent stratification may develop. A simulation of the monthly cycle based on a model including straining, stirring, and the estuarine circulation is in qualitative agreement with the main features of the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号