首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Accurate numerical continuation of families of plane symmetric direct periodic orbits around the large primary in the Sun-Jupiter case of the restricted problem of three bodies allows the determination of the vertical branching points where families of three-dimensional symmetric periodic orbits bifurcate from the planar ones. Three families of plane periodic orbits, and the initial segments of ten bifurcating families of three-dimensional ones are determined. The stability of these families is examined and examples of their orbits are illustrated.  相似文献   

2.
In this work we consider four families of plane periodic orbits direct around the Sun which approach Jupiter but they are sufficiently far from it so as to be considered as predominantly two body orbits of the Sun-asteroid system. We study their horizontal and vertical stabilities and we give the exact orbits of bifurcations of these families with three-dimensional families of the same multiplicity or twice the multiplicity of the above families of plane symmetric periodic orbits. Moreover, we give the first segments of the three dimensional families of symmetric periodic orbits which emanate from these plane bifurcations and we study their stability relating it with the stability of the plane bifurcations.  相似文献   

3.
The procedure of numerical ascent from families of planar to three-dimensional periodic orbits and the subsequent descent to the plane is proved efficient in determining new families of planar asymmetric periodic orbits in the restricted three-body problem. Two such families are computed and described for values of the mass parameter for which it has been found that they exist. Two new families of three-dimensional asymmetric periodic orbits are also presented in this paper.  相似文献   

4.
Two new families of three-dimensional simple-symmetric periodic orbits are determined numerically in the Sun-Jupiter case of the restricted three-body problem. These families emanate from the vertical-critical orbits (v = 1,c v = 0)of the familiesi andl of plane symmetric simpleperiodic orbits direct around the Sun and the Sun-Jupiter respectively. Further, the numerical technique employed in the determination of these families has been described and interesting results have been pointed out. Also, computer plots of the orbits of these families have been shown in conical projections.  相似文献   

5.
Two families of symmetric periodic orbits of the planar, general, three-body problem are presented. The masses of the three bodies include ratios equal to the Sun-Jupiter-Saturn system and the periods of the orbits of Jupiter and Saturn are in a 25 resonance. The (linear) stability of the orbits are studied in relation to eccentricity and mass variations. The generation of the two families of periodic orbits follows a systematic approach and employs (numerical) continuation from periodic orbits of the first and second kind in the circular restricted problem to the elliptic restricted problem and from the circular and elliptic problems to the general problem through bifurcation phenomena relating the three dynamical systems. The approach also provides insight into the evolutionary process of periodic orbits continued from the restricted problems to the general problem.  相似文献   

6.
Several families of planar planetary-type periodic orbits in the general three-body problem, in a rotating frame of reference, for the Sun-Jupiter-Saturn mass-ratio are found and their stability is studied. It is found that the configuration in which the orbit of the smaller planet is inside the orbit of the larger planet is, in general, more stable.We also develop a method to study the stability of a planar periodic motion with respect to vertical perturbations. Planetary periodic orbits with the orbits of the two planets not close to each other are found to be vertically stable. There are several periodic orbits that are stable in the plane but vertically unstable and vice versa. It is also shown that a vertical critical orbit in the plane can generate a monoparametric family of three-dimensional periodic orbits.  相似文献   

7.
The general properties of certain differential systems are used to prove the existence of periodic orbits for a particle around an oblate spheroid.In a fixed frame, there are periodic orbits only fori=0 andi near /2. Furthermore, the generating orbits are circles.In a rotating frame, there are three families of orbits: first a family of periodic orbits in the vicinity of the critical inclination; secondly a family of periodic orbits in the equatorial plane with 0<e<1; thirdly a family of periodic orbits for any value of the inclination ife=0.  相似文献   

8.
We consider the bifurcation of 3D periodic orbits from the plane of motion of the primaries in the restricted three-body problem with oblateness. The simplest 3D periodic orbits branch-off at the plane periodic orbits of indifferent vertical stability. We describe briefly suitable numerical techniques and apply them to produce the first few such vertical-critical orbits of the basic families of periodic orbits of the problem, for varying mass parameter and fixed oblateness coefficent A1 = 0.005, as well as for varying A1 and fixed = 1/2. The horizontal stability of these orbits is also determined leading to predictions about the stability of the branching 3D orbits.  相似文献   

9.
The resonant structure of the restricted three body problem for the Sun- Jupiter asteroid system in the plane is studied, both for a circular and an elliptic orbit of Jupiter. Three typical resonances are studied, the 2 : 1, 3 : 1 and 4 : 1 mean motion resonance of the asteroid with Jupiter. The structure of the phase space is topologically different in these cases. These are typical for all other resonances in the asteroid problem. In each case we start with the unperturbed two-body system Sun-asteroid and we study the continuation of the periodic orbits when the perturbation due to a circular orbit of Jupiter is introduced. Families of periodic orbits of the first and of the second kind are presented. The structure of the phase space on a surface of section is also given. Next, we study the families of periodic orbits of the asteroid in the elliptic restricted problem with the eccentricity of Jupiter as a parameter. These orbits bifurcate from the families of the circular problem. Finally, we compare the above families of periodic orbits with the corresponding families of fixed points of the averaged problem. Different averaged Hamiltonians are considered in each resonance and the range of validity of each model is discussed.  相似文献   

10.
We show that the procedure employed in the circular restricted problem, of tracing families of three-dimensional periodic orbits from vertical self-resonant orbits belonging to plane families, can also be applied in the elliptic problem. A method of determining series of vertical bifurcation orbits in the planar elliptic restricted problem is described, and one such series consisting of vertical-critical orbits (a v=+1) is given for the entire range (0,1/2) of the mass parameter . The initial segments of the families of three-dimensional orbits which bifurcate from two of the orbits belonging to this series are also given.  相似文献   

11.
12.
The present research was motivated by the recent discovery of planets around binary stars. Our initial intention was thus to investigate the 3-dimensional nearly circular periodic orbits of the circular restricted problem of three bodies; more precisely Stromgren's class L, (direct) and class m, (retrograde). We started by extending several of Hénon's vertical critical orbits of these 2 classes to three dimensions, looking especially for orbits which are near circular and have stable characteristic exponents.We discovered early on that the periodic orbits with the above two qualifications are fairly rare and we decided thus to undertake a systematic exploration, limiting ourselves to symmetric periodic orbits. However, we examined all 16 possible symmetry cases, trying 10000 sets of initial values for periodicity in each case, thus 160000 integrations, all with z o or o equal to 0.1 This gave us a preliminary collection of 171 periodic orbits, all fairly near the xy-plane, thus with rather low inclinations. Next, we integrated a second similar set of 160000 cases with z o or o equal to 0.5, in order to get a better representation of the large inclinations. This time, we found 167 periodic orbits, but it was later discovered that at least 152 of them belong to the same families as the first set with 0.1Our paper quickly describes the definition of the problem, with special emphasis on the symmetry properties, especially for the case of masses with equal primaries. We also allow a section to describe our approach to stability and characteristic exponents, following our paper on this subject, (Broucke, 1969). Then we describe our numerical results, as much as space permits in the present paper.We found basically only about a dozen families with sizeable segments of simple stable periodic orbits. Some of them are around one of the two stars only but we do not describe them here because of a lack of space. We extended about 170 periodic orbits to families of up to 500 members, (by steps of 0.005 in the parameter), although, in many cases, we do not know the real end of the families. We also give an overview of the different types of periodic orbits that are most often encountered. We describe some of the rather strange orbits, (some of which are actually stable).  相似文献   

13.
We study symmetric relative periodic orbits in the isosceles three-body problem using theoretical and numerical approaches. We first prove that another family of symmetric relative periodic orbits is born from the circular Euler solution besides the elliptic Euler solutions. Previous studies also showed that there exist infinitely many families of symmetric relative periodic orbits which are born from heteroclinic connections between triple collisions as well as planar periodic orbits with binary collisions. We carry out numerical continuation analyses of symmetric relative periodic orbits, and observe abundant families of symmetric relative periodic orbits bifurcating from the two families born from the circular Euler solution. As the angular momentum tends to zero, many of the numerically observed families converge to heteroclinic connections between triple collisions or planar periodic orbits with binary collisions described in the previous results, while some of them converge to “previously unknown” periodic orbits in the planar problem.  相似文献   

14.
We study the dynamics of 3:1 resonant motion for planetary systems with two planets, based on the model of the general planar three body problem. The exact mean motion resonance corresponds to periodic motion (in a rotating frame) and the basic families of symmetric and asymmetric periodic orbits are computed. Four symmetric families bifurcate from the family of circular orbits of the two planets. Asymmetric families bifurcate from the symmetric families, at the critical points, where the stability character changes. There exist also asymmetric families that are independent of the above mentioned families. Bounded librations exist close to the stable periodic orbits. Therefore, such periodic orbits (symmetric or asymmetric) determine the possible stable configurations of a 3:1 resonant planetary system, even if the orbits of the two planets intersect. For the masses of the system 55Cnc most of the periodic orbits are unstable and they are associated with chaotic motion. There exist however stable symmetric and asymmetric orbits, corresponding to regular trajectories along which the critical angles librate. The 55Cnc extra-solar system is located in a stable domain of the phase space, centered at an asymmetric periodic orbit.  相似文献   

15.
We consider a class of Hamiltonian systems with two degrees of freedom with singularities. This class includes several symmetric subproblems of the $n$ -body problem where the singularities are due to collisions involving two or more bodies. “Schubart-like” periodic orbits having two collisions in one period, are present in most of these subproblems. The purpose of this paper is to study the existence of families of such a periodic orbits in a general setting. The blow up techniques of total collision and infinity are applied to our class of Hamiltonian system. This allows us to derive sufficient conditions to ensure the existence of families of double symmetric “Schubart-like” periodic orbits having many singularities. The orbits in the family can be parametrized by the number of singularities in one period. The results are applied to some subproblems of the gravitational $n$ -body problem.  相似文献   

16.
We present a global view of the resonant structure of the phase space of a planetary system with two planets, moving in the same plane, as obtained from the set of the families of periodic orbits. An important tool to understand the topology of the phase space is to determine the position and the stability character of the families of periodic orbits. The region of the phase space close to a stable periodic orbit corresponds to stable, quasi periodic librations. In these regions it is possible for an extrasolar planetary system to exist, or to be trapped following a migration process due to dissipative forces. The mean motion resonances are associated with periodic orbits in a rotating frame, which means that the relative configuration is repeated in space. We start the study with the family of symmetric periodic orbits with nearly circular orbits of the two planets. Along this family the ratio of the periods of the two planets varies, and passes through rational values, which correspond to resonances. At these resonant points we have bifurcations of families of resonant elliptic periodic orbits. There are three topologically different resonances: (1) the resonances (n + 1):n, (2:1, 3:2, ...), (2) the resonances (2n + 1):(2n-1), (3:1, 5:3, ...) and (3) all other resonances. The topology at each one of the above three types of resonances is studied, for different values of the sum and of the ratio of the planetary masses. Both symmetric and asymmetric resonant elliptic periodic orbits exist. In general, the symmetric elliptic families bifurcate from the circular family, and the asymmetric elliptic families bifurcate from the symmetric elliptic families. The results are compared with the position of some observed extrasolar planetary systems. In some cases (e.g., Gliese 876) the observed system lies, with a very good accuracy, on the stable part of a family of resonant periodic orbits.  相似文献   

17.
We compare families of simple periodic orbits of test particles in the Newtonian and relativistic problems of two fixed centers (black holes). The Newtonian problem is integrable, while the relativistic problem is highly non-integrable.The orbits are calculated on the meridian plane through the fixed centersM 1 (atz=+1) andM 2 (atz=–1) for energies smaller than the escape energyE=1. We use prolate spheroidal coordinates (, , =const) and also the variables =cosh and =–cos . The orbits are inside a curve of zero velocity (CZV). The Newtonian orbits are also limited by an ellipse and a hyperbola, or by two eillipses. There are 3 main types of periodic orbits (1) elliptic type (around both centers), (2) hyperbolic-type, and (3) resonant-type.The elliptic type orbits are stable in the Newtonian case and both stable and unstable in the relativistic case. From the stable orbits bifurcate double period orbits both symmetric and asymmetric with respect to thez-axis. There are also higher order bifurcations. The hyperbolic-type orbits are unstable. The Newtonian resonant orbits are defined by the ratiot µ/t =n/m of oscillations along and during one period, and they are all marginally unstable. The corresponding relativistic orbits are stable, or unstable. The main families are figure eight orbits aroundM 1, or aroundM 2 (3/1 orbits); gamma, or inverse gamma orbits (4/2); higher resonant families 5/1,7/1,...,8/2,12/2,...;, more complicated orbits, like 5/3, and bifurcations from the above orbits. Satellite orbits aroundM 1, orM 2, and their bifurcations (e.g. double period) exist in the relativistic case but not in the Newtonian case. The characteristics of the various families are quite different in the Newtonian and the relativistic cases. The sizes of the orbits and their stabilities are also quite different in general. In the Appendix we study the various types of straight line orbits and prove that some subcases introduced by Charlier (1902) are impossible.  相似文献   

18.
We present special generating plane orbits, the vertical-critical orbits, of the coplanar general three-body problem. These are determined numerically for various values of m3, for the entire range of the mass ratio of the two primaries. The vertical-critical orbits are necessary in order to specify the vertically stable segments of the families of plane periodic orbits, and they are also the starting points of the families of the simplest possible three-dimensional periodic orbits, namely the simple and double periodic. The initial conditions of the vertical-critical periodic orbits of the basic families l, m, i, h, b and c and their stability parameters are determined. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We study the multiple periodic orbits of Hill’s problem with oblate secondary. In particular, the network of families of double and triple symmetric periodic orbits is determined numerically for an arbitrary value of the oblateness coefficient of the secondary. The stability of the families is computed and critical orbits are determined. Attention is paid to the critical orbits at which families of non-symmetric periodic orbits bifurcate from the families of symmetric periodic orbits. Six such bifurcations are found, one for double-periodic and five for triple-periodic orbits. Critical orbits at which families of sub-multiple symmetric periodic orbits bifurcate are also discussed. Finally, we present the full network of families of multiple periodic orbits (up to multiplicity 12) together with the parts of the space of initial conditions corresponding to escape and collision orbits, obtaining a global view of the orbital behavior of this model problem.  相似文献   

20.
Three-dimensional periodic motions of three bodies are shown to exist in the infinitesimal neighbourhood of their collinear equilibrium configurations. These configurations and some characteristic quantities of the emanating three-dimensional periodic orbits are given for many values of the two mass parameters, =m 2/(m 1+m 2) andm 3, of the general three-body problem, under the assumption that the straight line containing the bodies at equilibrium rotates with unit angular velocity. The analysis of the small periodic orbits near the equilibrium configurations is carried out to second-order terms in the small quantities describing the deviation from plane motion but the analytical solution obtained for the horizontal components of the state vector is valid to third-order terms in those quantities. The families of three-dimensional periodic orbits emanating from two of the collinear equilibrium configurations are continued numerically to large orbits. These families are found to terminate at large vertical-critical orbits of the familym of retrograde periodic orbits ofm 3 around the primariesm 1 andm 2. The series of these termination orbits, formed when the value ofm 3 varies, are also given. The three-dimensional orbits are computed form 3=0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号