首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Šimek  M.  Pecina  P. 《Earth, Moon, and Planets》2000,88(2):115-122
The correlation of sporadic meteor rates from radar observations in January, August, and December non-show-er periods in 1958–2000, and relevant solar activity represented by the solar relative number, R, is investigated. Similar analysis of the December sporadic period was already presented by Simek 1999, and Pecina. Complete analysis indicates high correlation of both phenomena with sporadic meteor counts curve following that of solar activity after 1.5–2 years in the mean eleven year solar cycle with the correlation index exceeding 70%. This result supports the large volume of observing material of the Ondřejov meteor radar in the above mentioned span covering almost four solar cycles. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
A new method of processing of visual meteor data has been worked outand applied to Perseid meteor shower observations. Reduced meteor hourly rates with magnitudes brighter than +3 are proportional to meteor flux densities with a coefficient equals to the effective collecting area. Corrections due to moon light and for meteor path lenghts were applied. Our observations 1972–1979 and 1982–1990 gave similar hourly rate profiles with a maximum rate of 71 meteors at solar longitude L=140.36°. Perseids 1980 and 1981 were about 1.5 times more active. The maximum Perseid activity in 1991–1992 was 119 meteors at solar longitude 139.54° and narrow peaks are observed at the same longitude showing an enhanced activity up to 225 meteors.  相似文献   

3.
Forward-scatter radio meteor observations have been made at Japan since 1996 using inexpensive and low-end equipment. The activity of some major meteor showers and the seasonal variability of sporadic meteors in 2006 are presented.  相似文献   

4.
During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping “hot” component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.  相似文献   

5.
We present the first clear observations of meteor shower activity from meteor-head echoes detected by a high-power large-aperture radar (HPLAR). Such observations have been performed at the Jicamarca VHF radar using its interferometric capabilities allowing the discrimination of meteor shower echoes from the much more frequent sporadic meteors. Until now, HPLARs were unable to distinguish meteor shower from the much more common sporadic meteor ones. In this work we have been able to detect and characterize the η-Aquariids (ETA) as well as the Perseids (PER) showers. The shower activity is more conspicuous for the ETA than for the PER shower due to the more favorable geometry. Namely, PER meteors come from low elevation angles, experiencing more filtering due to the combined Earth-atmosphere-radar instrument. In both cases, there is an excellent agreement between the measured mean velocity of the shower echoes and their expected velocity, within a fraction of 1 km s−1. Besides the good agreement with expected visual results, HPLARs observe meteors with a variety of particles sizes and masses, not observed by any other technique. Taking into account the different viewing volumes, compare to optical observations Jicamarca observes more than 1000 times more ETA meteors. Our results indicate that Jicamarca and other HPLARs are able to detect the echoes from meteor showers, but without interferometric capabilities such populations are difficult to identify just from their velocity distributions, particularly if their velocity distributions are expected to be similar to the more dominant distributions of sporadic meteors.  相似文献   

6.
The state of the art in the theory of processing of visual observations of meteor streams is considered. Of the three widely used methods of visual-observation processing, the method developed at the Engel'gardt Astronomical Observatory provides the highest accuracy of conversion to the hourly rate of meteors. For the first time, the dependence of the fine structures of the Geminid, Perseid, and Leonid streams on the minimum detected mass of meteor bodies is obtained from visual observations. A shift in the position of an activity maximum for smaller masses in the direction of lower solar longitudes is confirmed for the Geminids. For the Perseids, an activity maximum for meteor bodies with mass exceeding 0.01 g, sets in earlier than for smaller particles. In the Leonid swarm, no correlation was found between the node longitude of the mean swarm orbit and mass of meteor bodies.  相似文献   

7.
We have analysed the meteor records in the chronicles that describe the era of the Song dynasty ( ad 960–1279). The data are complementary to the record-vacant 10th century of the Koryo dynasty ( ad 918–1392). The annual activity of sporadic meteors analysed shows a generic sinusoidal behaviour as in modern observations. In addition, we have also found that there are two prominent meteor showers, one in August and the other in November, appearing on the fluctuating sporadic meteors. The date of occurrence of the August shower indicates it to be the Perseids. By comparing the date of occurrence of the November shower with those of the Leonid showers of the Koryo dynasty, recent visual observations and the world-wide historical meteor storms, we conclude that the November shower is the Leonids. The regression rate of the Leonids is obtained to be     days per century, which agrees with recent observations.  相似文献   

8.
Every year the Earth crosses or passes near one of the dust trails left by Comet 55P/Tempel-Tuttle in its pass through the Solar System every 33.2 years. This produces a meteor shower Commonly called the Leonid. The 2001 Leonid meteor shower is one of the strongest in recent years. We present observations made by the 50 MHz all-sky meteor radar located at the Platteville Atmospheric Observatory in Colorado (40° N, 105° W). The spatial and temporal distributions of the meteor activity detected by the radar during the 2001 Leonid shower differs from the observed sporadic activity detected by VHF radars. Estimation of the radiant flux of the meteor shower of the shower by a well-known methodology is presented, and the intensity of the phenomena is discussed.  相似文献   

9.
A cluster analysis procedure has been used to estimate the fraction of the sporadic interlopers (sporadis bias) identified as stream members among the observed meteor orbits. Using the artificial meteor orbits with the same distribution as the observed one, the sporadic bias is estimated for the given threshold value of the orbital similarityD c. It has been shown that in case of the radio meteor catalogues theD c values given by the formula proposed in Southworth and Hawkins (1963)and in Lindblad (1971) correspond to the sporadic bias of 8–21%. For the five radio meteor catalogues the values ofD c corresponding to the fixed bias equal to 10% and 15% are given.  相似文献   

10.
Abstract— We have used a 3.0 m diameter liquid mirror telescope (LMT) coupled to a microchannel plate image‐intensified charge‐coupled device (CCD) detector to study the 1999 Leonid meteor shower. This is the largest aperture optical instrument ever utilized for meteor detection. While the observing system is sensitive down to stars of +18 astronomical magnitude under optimum conditions, when corrections for meteor motion are applied the majority of the meteors collected fall in the absolute magnitude range from +5 to +10, corresponding to photometric masses from about 10?7 to 10?9 kg. This is largely due to the fact that the field of view of the LMT was only 0.28°, so that only a small portion of the luminous meteor trail was recorded. While the flux of these small (1.4 times 10?9 kg) Leonid meteors is low (on the order of one Leonid meteor per hour per square kilometer perpendicular to the Leonid), we do have clear evidence that the Leonid stream contains particles in the mass range studied here. The data showed a possibly significant peak in Leonid flux (9.3 ± 3.5) for the 1 h period from 11:00 to 12:00 u.t. 1999 November 17 (solar longitude 234.653 to 234.695, epoch 2000.0), although the main trend of these results is a broad low‐level Leonid activity. There is evidence that small meteoroids are more widely distributed in the Leonid stream, as would be expected from cometary ejection stream models. As would be expected from an extrapolation of mass distribution indices for brighter meteors, the vast majority of meteors at this size are sporadic. The LMT is a powerful detector of sporadic meteors, with an average non‐Leonid detection rate of more than 140 meteor events per hour.  相似文献   

11.
A digital image intensified CCD camera with an electronically gated image intensifier was used to produce very short duration images of meteors. The observational system employed a 0.40 m F/4.5 Newtonian telescope to obtain high spatial resolution. A second intensified CCD camera was used to yield height information using parallax. At a typical meteor height one pixel (for the vertically oriented system) corresponded to about 1.1 m. A sampling of 59 mainly sporadic meteors was analyzed. There is clear variability from meteor to meteor, with many meteors (nearly 50%) showing only a small amount of wake, while some meteors (approximately 20%) have the off segments completely filled in.  相似文献   

12.
The presence of a diurnal variation in meteor activity is well established. The sporadic meteor count rates are higher on the local dawn side and lower on the local dusk side. This phenomenon is caused by the Earth’s orbital motion and rotation. Meteor radar measurements have been compared from Esrange, Kiruna, Sweden, at 68° N, from Juliusruh, Germany, at 55° N, and from Ascension Island, at 8° S, to investigate how the diurnal variation depends on season at different latitudes. Data have been used from vernal and autumnal equinoxes and summer and winter solstices to locate the largest seasonal differences.  相似文献   

13.
Jack D. Drummond 《Icarus》1981,47(3):500-517
Sixteen comets produce recognizable meteor showers that are found in A. F. Cook's (1973, In Evolutionary and Physical Properties of Meteoroids (C. L. Hemenway, P. M. Millman, and A. F. Cook, Eds.), pp. 183–191, U.S. Govt. Printing Office, Washington, D.C.), working list of meteor streams. Of these, five are long period, including one in a parabolic and one in a hyperbolic orbit. The largest Earth-comet orbit miss distance is 0.20 AU for P/Encke and the Northern and Southern Taurids. Using this is an upper limit for meteor showers from comets, all comets which approach the Earth's orbit to within 0.20 AU were extracted from the Catalogue of Cometary Orbits (B. G. Marsden, 1979. 3rd ed., Central Bureau of Astronomical Telegrams, IAU SAO, Cambridge, Mass.). A compilation of such comets is presented by date minimum approach, along with the distance of closest approach and the theoretical geocentric radiants and velocities of possible associated meteor showers. Both pre- and postpperihelion encounters with the Earth's orbit are considered. There are 240 entries for 178 long-period comets, and 36 for 28 short-period comets. It is noted that all short-period comets that have approached the Earth's orbit to within 0.08 AU have produced meteors, except P/Lexell, P/Finlay, P/Denning-Fujikawa, and P/Grigg-Skjellerup. Attention is called to the favorable observing conditions for detecting meteors from P/Grigg-Skjellerup in April 1982, and for the possibility of another great Draconid storm from P/Giacobini-Zinner in October 1985. A comparison is made between observed sporadic meteor rates and the distribution of theoretical radiants throughout the year, from which it is concluded that the currently known comets can account for sporadic meteors. A criterion is developed to test whether or not an observed meteor shower can be associated with a given theoretical radiant. Based on known examples, a qualitative model for comet/meteor relationships is also presented.  相似文献   

14.
Enhanced Taurid activity in terms of visual meteor and fireball rates has been found in 1988, 1991, 1995, 1998 and 2005 data. The years of heightened activity are shown to be unequivocally linked to the encounters of swarms of resonantly trapped particles in the Taurid meteoroid stream according to the model proposed by Asher & Clube. While the annual activity level of the Taurid meteor shower in terms of zenithal hourly rate  (ZHR) is 7.8 ± 1.2  , swarm year activity typically reaches ZHRs of 12–17. The annual fraction of fireballs is below 1 per cent; in swarm years, this fraction is as high as 2.4–4.6 per cent near the maximum of the Taurid activity period.  相似文献   

15.
Radar observations of the Leonid meteor shower, made near Ottawa during the years from 1957 to 1968 inclusive, are analyzed and reduced to give comparative flux rates. A strength classification has been made in terms of the ratio of shower rates to background rates. The relative strengths found by radar, showing marked variability from year to year, are confirmed by analysis of available visual observations. There is also great variation in the distribution of particle sizes. The high rates of the 1966 return were accompanied by a relatively high percentage of small particles. In 1965 there was a much higher proportion of large particles, and the high rates of 1961 showed a mass or size distribution intermediate between that of 1966 and of 1965.  相似文献   

16.
The results of an analysis of the orbital structure of the meteor complex accessible for radar observations at northern midlatitudes are reported. Experimentally, the study is based on the long-term monitoring of the influx of meteor matter into the Earth’s atmosphere performed with the meteor radar of Kazan State University starting from 1986. The study uses a discrete quasi-tomographic method to measure the radiants and velocities of meteor showers based on goniometric data of the meteor radar and diffraction measurements of meteor velocities. The discretization of the detection environment—in particular, in terms of velocity—is shown to result in no substantial loss of measurement accuracy. The error of the measured velocity of the shower does not exceed 1.5 km/s for a standard deviation of a single velocity measurement equal to 3 km/s. Microshower representation is used with microshowers either representing the correlated part of the sporadic complex or being partial streams of major and minor showers, or fragments of the dust environment of minor bodies passing by Earth or falling onto it. The data of measurements made over the entire annual cycle are used to construct combined maps of the distribution of the observed 2263 microshowers (a total of 22 604 orbits) by their inclination, aphelion distance, and longitudes of the ascending nodes of their orbits. The observing conditions are shown to have a significant effect on the parameters of the distribution of aphelion distances for different months, and the corresponding distributions for prograde and retrograde orbits are shown to differ fundamentally. A specific feature of such distribution maps is that they allow uniform representation of both meteor showers and irregularities of the sporadic complex.  相似文献   

17.
The detailed activity profile of the Sextandids - one of the day-time meteor showers - is poorly known and still unclear. Using the forward-scatter radio technique we have successfully been able to obtain further detailed overall activity profile of the Sextantids for seven consecutive years: 1991–1997. Analysis confirmed the Sextantid activity duration in solar longitude (J2000) of at least 184–193° and the maximum solar longitude at 188.35 ± 0.10° with a full width at half maximum (FWHM) of 2.0 ± 0.2°. Performing the numerical integrations, we also substantiated a possibility of the association between Apollo-type asteroid (3200) Phaethon and the Sextantids. Furthermore, we roughly estimated relative maximum flux rate of Sextantids : Geminids as 1 : 3 amplitude ratio. Depending upon the flux rates and the time lags of the orbital evolution with Phaethon, we conclude that the Sextantids are at a more progressive stage of orbital evolution than the Geminids if both meteor streams are really associated with Phaethon. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Some results of an all-sky survey of meteor radiant distributions over an 8 year period are presented in the form of radiant activity plots for each month of the year, deduced from data obtained with the monostatic direction-finding meteor radar at Grahamstown (26.5 E, 33.3 S). The major showers stand out prominently in the appropriate months, as expected, and sporadic activity is found to be largely associated with diffuse sources 20° west of the sun and 20° east of the antihelion point. These sources exhibit an annual variability which is similar in successive years. Although there has been no allowance here for instrumental bias it is concluded that the results reflect significant seasonal trends which warrant further exploration. Ir is suggested that single-station radars could play an important role in this regard. Attention is also drawn to an apparent source at the south celestial pole, and its possible origin is briefly discussed.  相似文献   

19.
Hong-Jin Yang  Changbom Park 《Icarus》2005,175(1):215-225
We have compiled and analyzed historical Korean meteor and meteor shower records in three Korean official history books, Samguksagi which covers the three Kingdoms period (57 B.C.-A.D. 935), Goryeosa of Goryeo dynasty (A.D. 918-1392), and Joseonwangjosillok of Joseon dynasty (A.D. 1392-1910). We have found 3861 meteor and 31 meteor shower records. We have confirmed the peaks of Perseids and an excess due to the mixture of Orionids, north-Taurids, or Leonids through the Monte Carlo test. The peaks persist from the period of Goryeo dynasty to that of Joseon dynasty, for almost one thousand years. Korean records show a decrease of Perseids activity and an increase of Orionids/north-Taurids/Leonids activity. We have also analyzed seasonal variation of sporadic meteors from Korean records. We confirm the seasonal variation of sporadic meteors from the records of Joseon dynasty with the maximum number of events being roughly 1.7 times the minimum. The Korean records are compared with Chinese and Japanese records for the same periods. Major features in Chinese meteor shower records are quite consistent with those of Korean records, particularly for the last millennium. Japanese records also show Perseids feature and Orionids/north-Taurids/Leonids feature, although they are less prominent compared to those of Korean or Chinese records.  相似文献   

20.
The distribution of meteor signals reflected from a backscatter radar is considered according to their duration. This duration time (T) is used to classify the meteor echoes and to calculate the mass index (S) of different meteoroids of shower plus sporadic background. Observational data on particle size distribution of the Geminid meteor shower are very scarce, particularly at low latitudes. In this paper the observational data from Gadanki radar (13.46°N, 79.18°E) have been used to determine the particle size distribution and the number density of meteoroids inside the stream of the Geminid meteor shower. The mean variation of meteor number density across the stream has been determined for three echo duration classes, T<0.4, T=0.4–1 and T>1 s. We are more interested in the appearance of echoes of various durations and therefore meteors of various masses in order to understand more on the filamentary structure of the stream. It is observed that the faint particle flux peaks earlier than the larger particles. We found a decreasing trend in the mass index values from the day of peak activity to the next observation days. The mass index profile was found to be U-shaped with a minimum value near the time of peak activity. The observed minimum s values are 1.64±0.05 and 1.65±0.04 in the years 2003 and 2005, respectively. The activity of the shower indicates the mass segregation of meteoroids inside the stream. Our results are best comparable with the “scissors” structure model of the meteoroid stream formation of Ryabova [2007. Mathematical modeling of the Geminid meteoroid stream. Mon. Not. R. Astron. Soc. 375, 1371–1380] by considering the asteroid 3200 Phaethon as an extinct comet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号