首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The interstellar scintillation of the pulsars PSR B0809+74 and B0950+08 have been studied using observations at low radio frequencies (41, 62, 89, and 112 MHz), and the characteristic temporal and frequency scales for diffractive scintillations at these frequencies determined. A comprehensive analysis of the frequency and temporal structure functions reduced to a single frequency shows that the spectra of the inhomogeneities of the interstellar plasma toward both pulsars are described by a power law. The index of the interstellar plasma fluctuation spectrum toward PSR B0950+08 (n = 3.00 ± 0.05) differs appreciably from the Kolmogorov index. The spectrum toward PSR B0809+74 is a power law with index n = 3.7 ± 0.1. Strong angular refraction has been detected toward PSR B0950+08. Analysis of the distribution of inhomogeneities along the line of sight indicates that the scintillations of PSR B0950+08 take place in a turbulent layer with an enhanced electron density localized approximately 10 pc from the observer. The distribution of inhomogeneities for PSR B0809+74 is quasi-uniform. The mean square fluctuations of the electron density are estimated for inhomogeneities with characteristic scale ρ 0 = 107 m along the directions toward four pulsars. The local turbulence in the 10-pc layer is a factor of 20 higher on this scale than in the extended region responsible for the scintillations of PSR B0809+74.  相似文献   

2.
A correlation has been detected between the volume density of pulsars and the density of interstellar ionized gas on scales of more than 500 pc in Galactic longitude and 200 pc in Galactic latitude. On smaller scales, the correlation is present only for pulsars with ages less than 60000 years, which are located predominantly near supernova remnants and H II regions. This all indicates that pulsars are born in regions with high concentrations of interstellar gas. The minimum emission measures observed in the directions toward pulsars are inversely proportional to the pulsar ages. It is concluded that the ionized gas in the vicinities of a number of pulsars was formed during supernova explosions, and corresponds to Strömgren zones. The ionization of the gas in these zones requires a radiation energy on the order of 1050–1051 erg.  相似文献   

3.
The pulsar PSR B2111+46 has been observed at 112 MHz, and a new approach to analyzing pulsar pulses scattered in turbulent interstellar plasma applied. This method is based on the dependence of the normalized energy in the trailing part of a pulse on the intrapulse time. Since the trailing edge of a pulse follow exponential law to high accuracy, the inner turbulence scale of the interstellar plasma exceeds the field coherence scale. The measured scattering parameter is τ sc = 147 ± 1 ms. Analysis of the parameters of diffractive and refractive scintillations of the pulsar at 610 MHz together with the 112 MHz data shows that the spectrum of the interstellar plasma toward PSR B2111+46 is a piecewise power law: on scales of 1013–1014 cm, the exponent of the turbulence spectrum is n ≃ 4, whereas n = 3.5 on scales of 2 × 108−1013 cm. The spectrum flattens with approach to the inner turbulence scale l: n = 3–3.2. The obtained inner turbulence scale is l = (3.5 ± 1.5) × 107 cm. The distribution of the interstellar plasma toward the pulsar is close to statistically homogeneous. The local density (N e = 0.4 cm−3) and filling factor (F = 0.04) of the interstellar plasma have been estimated. The similarity of N e estimates obtained from the inner scale of the inhomogeneities and the ratio of the emission measure to the dispersion measure provides evidence that the inner turbulence scale corresponds to the ion inertial length.  相似文献   

4.
The formation and evolution of supermassive (102?1010 M ) black holes (SMBHs) in the dense cores of globular clusters and galaxies is investigated. The raw material for the construction of the SMBHs is stellar black holes produced during the evolution of massive (25?150M ) stars. The first SMBHs, with masses of ~1000M , arise in the centers of the densest and most massive globular clusters. Current scenarios for the formation of SMBHs in the cores of globular clusters are analyzed. The dynamical deceleration of the most massive and slowly moving stellar-mass (< 100M ) black holes, accompanied by the radiation of gravitational waves in late stages, is a probable scenario for the formation of SMBHs in the most massive and densest globular clusters. The dynamical friction of the most massive globular clusters close to the dense cores of their galaxies, with the formation of close binary black holes due to the radiation of gravitational waves, leads to the formation of SMBHs with masses ? 103 M in these regions. The stars of these galaxies form galactic bulges, providing a possible explanation for the correlation between the masses of the bulge and of the central SMBHs. The deceleration of the most massive galaxies in the central regions of the most massive and dense clusters of galaxies could lead to the appearance of the most massive (to 1010 M ) SMBHs in the cores of cD galaxies. A side product of this cascade scenario for the formation of massive galaxies with SMBHs in their cores is the appearance of stars with high spatial velocities (> 300 km/s). The velocities of neutron stars and stellar-mass black holes can reach ~105 km/s.  相似文献   

5.
The statistical dependence of τ/(DM)2 (the ratio of the broadening of a pulsar pulse due to scattering in the interstellar medium to the square of the pulsar’s dispersion measure) on the pulsar’s dispersionmeasure, Galactic coordinates, age, and the angular distance to the nearest supernova remnant are studied. This parameter describes the relative level of electron density fluctuations in the turbulent interstellar plasma. It is shown that the interstellar plasma turbulence level is three orders of magnitude higher in the spiral arms of the Galaxy than outside the arms. The plasma turbulence level is approximately an order of magnitude higher in the Galactic arms, in regions within ?0.3° of supernova remnants, than outside these regions. We conclude that the source of energy for the turbulence in the Galactic arms is supernova explosions in the denser medium there.  相似文献   

6.
We analyze the distribution of close binary stars in the orbital semimajor axis—primary mass plane. The reduced spatial density of stars with semimajor axes below 10R is confirmed. We identify the area in this plane occupied by precursors of W UMa stars, assuming that the driving force causing the components to approach each other is their magnetic stellar wind. This scenario enables us to estimate the rate of formation (0.02/year) and lifetime (108 yr) of W UMa stars. We derive a theoretical estimate of the ratio of the number of blue stragglers, N BS , and of horizontal-branch stars, N HB , in globular clusters based on the hypothesis that all blue stragglers are the result of component mergers in W UMa contact binaries. This ratio is N BS /N HB =0.4, close to the observed value for 62 Galactic globular clusters. We discuss possible reasons for the considerable dispersion of the observed estimates of this ratio for different clusters in our Galaxy.  相似文献   

7.
Measurements of the broadening of pulsar pulses by scattering in the interstellar medium are presented for a complete sample of 100 pulsars with Galactic longitudes from 6° to 311° and distances to three kiloparsec. The dependences of the scattering on the dispersion measure (τ sc(DM) ∝ DMα), frequency (τ sc(v) ∝ v ?γ ), Galactic longitude, and distance to the pulsar are analyzed. The dependence of the scattering on the dispersion measure in the near-solar neighbourhood can be represented by the power law τ sc(DM) ∝ DM2.2±0.1). Measurements at the low frequencies 111, 60, and 40 MHz and literature data are used to derive the frequency dependence of the scattering (τ sc(v) ∝ V ?γ ) over a wide frequency interval (covering a range of less than 10: 1) with no fewer than five frequencies. The index for the frequency dependence, γ = 4.1 ± 0.3, corresponds to a normal distribution for inhomogeneities in the turbulence in the scattering medium. Based on an analysis of the dependence of the scattering on the distance to the pulsar and on Galactic longitude, on average, the turbulence level C n 2 is the same in all directions and at all distances out to about three kpc, testifying to the statistical homogeneity of the turbulence of the scattering medium in the near-solar region of the Galaxy.  相似文献   

8.
We present an analysis of pulsar observations carried out on two frequency channels at 1634 MHz and 1650 MHz with a time resolution of 62.5 ns on the 70-m radio telescope of the NASA Deep Space Network in Tidbinbilla. The data were recorded using the S2 system, intended primarily for VLBI observations. Microstructure with characteristic timescales of 270, 80, and 150 µs was detected in pulsars B0833-45, B1749-28, and B1933 + 16, respectively. The distribution of microstructure timescales for the Vela pulsar (B0833-45) is characterized by a gradual growth with decreasing timescale to 200 µs; the distribution has a maximum at 20–200 µs and falls off sharply for timescales below 20 µs. The statistical relation between the microstructure modulation index m and the corresponding timescale τµ can be approximated by the power law dependence Rτ 0.5 ; i.e., the intensity is higher for micropulses with longer durations. This contradicts the predictions of nonlinear models for the formation of micropulses by supercompact soliton wave packets. In all the pulsars studied, the time delays of the micropulses between the two frequency channels deviate from the expected dispersion laws for the interstellar plasma. In particular, the micropulses in the low-frequency channel arrive earlier than predicted by the dispersion measures derived previously from the mean pulse profiles. The deviation from the dispersion delay is determined most accurately for B0833-45, and is 4.9±0.2 µs. Such anomalous delays are probably associated with the effects of propagation of the radio emission within the pulsar magnetosphere.  相似文献   

9.
The magnetic fields of soft gamma-ray repeaters and anomalous X-ray pulsars have been estimated, taking into account the appreciable increase in the deceleration of the neutron star if it is embedded in a dense interstellar medium. These estimates yield the usual values of B?1012 G.  相似文献   

10.
The emission measures EM in the directions of supernova remnants and pulsars are considered as functions of their ages t. The resulting plot has a well-defined lower boundary, which can be approximated by the expression EMmin∝1/t. The quantity EMmin increases with decreasing age t and does not level off or reach a maximum until t?500 yr. It is concluded that the bulk of the radiative energy that goes into ionizing and heating the interstellar gas is released at early stages of the supernova remnant’s evolution. We suggest that most of the kinetic energy of the supernova shell is converted into thermal energy and radiated at remnant ages t<100 yr, when the supernova shell, which is expanding at an enormous speed (about 104 km/s), overtakes the shell produced by the presupernova in the supergiant stage. We have estimated the ionization energy E?1051 erg, diameter L?60 pc, and electron density Ne?7 cm?3 of the HII regions around the supernovae (the supernova Strömgren zones). A list of objects that can be reliably identified as Strömgren zones of type II supernovae is presented. The plot of pulsar pulse broadening τ as a function of the pulsar age t also has a well-defined lower boundary, for which τ∝t?2 when t≥1000 yr. This suggests that turbulence develops during the first thousand years after the supernova outburst. It is also concluded that turbulence plays an important role in the formation and evolution of the Strömgren zones of type II supernovae.  相似文献   

11.
The integrated radio luminosities of 311 long-period (P > 0.1 s) and 27 short-period (P < 0.1 s) pulsars have been calculated using a new compilation of radio spectra. The luminosities are in the range 1027 ? 1030 erg/s for 88% of the long-period pulsars and 1028 ? 1031 erg/s for 88% of the short-period pulsars. We find a high correlation between the luminosity L and the estimate L 1 = S 400 d 2 from the catalog of Taylor et al. The factor η for the transformation of the rotational energy of the neutron star into radio emission increases-decreases with increasing period for long-period and short-period pulsars. The mean value of η is ?3.73 for the long-period and ?4.85 for short-period pulsars. No dependence was found between L and the pulsar’s kinematic age t k = |z|/〈v z〉, where |z| and 〈v z〉 = 300 km/s are the pulsars’ height above the plane of the Galaxy and mean velocity. A dependence of L on the rate of rotational energy losses ? was found for both groups of pulsars. It is shown that L? 1/3 for the entire sample. The pulsar luminosity function is constructed, and the total number and birth rate of pulsars in the Galaxy are calculated.  相似文献   

12.
A new method for separating intensity variations of a source’s radio emission having various physical natures is proposed. The method is based on the joint analysis of the structure function of intensity variations and the asymmetry function, which is a generalization of the asymmetry coefficient and which characterizes the asymmetry of the distribution function of intensity fluctuations on various scales for inhomogeneitiesin the diffractive scintillation pattern. Relationships for the asymmetry function in the cases of a logarithmic normal distribution of the intensity fluctuations and a normal distribution of the field fluctuations are derived. Theoretical relationships and observational data on interstellar scintillations of pulsars (refractive, diffractive, and weak scintillations) are compared. The data for PSR B0329+54, B1133+16, B1642-03, and B1933+16 pulsars were used for comparison. Pulsar scintillations match the behavior expected for a normal distribution of field fluctuations (diffractive scintillation) or logarithmic normal distribution of intensity fluctuations (refractive and weak scintillation). Analysis of the asymmetry function is a good test for distinguishing scintillations against the background of variations that have different origins.  相似文献   

13.
Timing of highly stable millisecond pulsars provides the possibility of independently verifying terrestrial time scales on intervals longer than a year. An ensemble pulsar time scale is constructed based on pulsar timing data obtained on the 64-m Parkes telescope (Australia) in 1995–2010. Optimal Wiener filters were applied to enhance the accuracy of the ensemble time scale. The run of the time-scale difference PTens?TT(BIPM2011) does not exceed 0.8 ± 0.4 μs over the entire studied time interval. The fractional instability of the difference PTens?TT(BIPM2011) over 15 years is σ z = (0.6 ± 1.6) × 10?15, which corresponds to an upper limit for the energy density of the gravitational-wave background Ω g h2 ~ 10?10 and variations in the gravitational potential ~10?15 Hz at the frequency 2 × 10?9 Hz.  相似文献   

14.
The paper considers possible observational implications of the presence of dark matter in the Galaxy in the form of dense gas clouds—clumpuscules with masses M c ~10?3 M and radii R c~3×1013 cm. The existence of such clouds is implied by modern interpretations of extreme scattering events—variations in quasar radio fluxes due to refraction in dense plasma condensations in the Galactic halo. The rate of collisions between these clouds is shown to be rather high: from 1 to 10M per year is ejected into the interstellar medium as a result of such collisions. The optical continuum and 21-cm emission from hot post-collision gas could be observable. Gas clouds composed of dark matter could be formed around O stars in an H II region with radius R~30 pc and emission measure EM?20 cm?6 pc. They could also be observable in the Hα line. The evaporation of clumpuscules by external ionizing radiation could be a substantial source of matter for the interstellar medium. Assuming that the total mass of matter entering the interstellar medium over the Hubble time does not exceed the mass of luminous matter in the Galaxy, upper limits are found for the cloud radii (R c<3.5×1012 cm) and the contribution of clouds to the surface density of the Galaxy (<50M pc?2). Dissipation of the kinetic energy of matter lost by clumpuscules could provide an efficient mechanism for heating gas in the Galactic halo.  相似文献   

15.
The results of numerical studies of the evolution of a close binary system containing a black hole with a mass of ~3000M are presented. Such a black hole could form in the center of a sufficiently rich and massive globular cluster. The secondary could be a main-sequence star, giant, or degenerate dwarf that fills or nearly fills its Roche lobe. The numerical simulations of the evolution of such a system take into account the magnetic wind of the donor together with the wind induced by X-ray irradiation from the primary, the radiation of gravitational waves by the system, and the nuclear evolution of the donor. Mass transfer between the components is possible when the donor fills its Roche lobe, and also via the black hole’s capture of some material from the induced stellar wind. The computations show that the evolution of systems with solar-mass donors depends only weakly on the mass of the accretor. We conclude that the observed ultra-luminous X-ray sources (L X ? 1038 erg/s) in nearby galaxies could include accreting black holes with masses of 102?104M. Three scenarios for the formation of black holes with such masses in the cores of globular clusters are considered: the collapse of superstars with the corresponding masses, the accretion of gas by a black hole with a stellar initial mass (<100M), and the tidal accumulation of stellar black holes. We conclude that the tidal accumulation of stellar-mass black holes is the main scenario for the formation of intermediate-mass black holes (102?104M) in the cores of globular clusters.  相似文献   

16.
An analysis of the basic parameters of a sample of radio and X-ray pulsars that are members of close binary systems is used to separate them into several families according to the nature of the pulsar companions and the previous evolution of the systems. To quantitatively describe the main parameters of close binaries containing neutron stars, we have performed numerical modeling of their evolution. The main driving forces of the evolution of these systems are the nuclear evolution of the donor, the magnetically coupled and radiation-induced stellar winds of the donor, and gravitational-wave radiation. We have considered donors that are low-mass stars in various stages of their evolution, nondegenerate helium stars, and degenerate stars. The systems studied are either the products of the normal evolution of close binaries with large initial component-mass ratios or result from inelastic collisions of old neutron stars with single and binary low-mass, main-sequence stars in the dense cores of globular clusters. The formation of single millisecond pulsars requires either the dynamical disruption of a low-mass (?0.1M) donor or its complete evaporation under the action of the X-ray radiation of the millisecond pulsar. The observed properties of binary radio pulsars with eccentric orbits combined with the bimodal spatial-velocity distribution of single radio pulsars suggest that it may be possible to explain the observed rotational and spatial motions of all radio pulsars as a result of their formation in close binaries. In this case, neutron stars formed from massive single stars or the components of massive wide binaries probably cannot acquire the high spatial velocities or rapid rotation rates that are required for the birth of a radio pulsar.  相似文献   

17.
The parameters of radio pulsars in binary systems and globular clusters are investigated. It is shown that such pulsars tend to have short periods (of the order of several milliseconds). Themagnetic fields of most of the pulsars considered are weak (surface fields of the order of 108?109 G). This corresponds to the generally accepted view that short-period neutron stars are spun up by angular momentum associated with the stellar wind from a companion. However, the fields at the light cylinders in these objects are two to three orders of magnitude higher than for the main population of single neutron stars. The dependence of the pulse width on the period does not differ from the corresponding dependences for single pulsars, assuming the emission is generated inside the polar cap, at moderate distances from the surface or near the light cylinder. The radio luminosities of pulsars in binary systems do not show the correlation with the rate of loss of rotational energy that is characteristic for single pulsars, probably due to the influence of accreting matter from a companion. Moreover, accretion apparently decreases the power of the emergent radiation, and can explain the observed systematic excess of the radio luminosity of single pulsars compared to pulsars in binary systems. The distributions and dependences presented in the article support generally accepted concepts concerning the processes occurring in binary systems containing neutron stars.  相似文献   

18.
The photometric behavior of the hot, young Herbig Be starMWC 297 on various time scales is studied using published data, as well as new observations. The series of photometric observations covers about 25 years. Over this time, the star showed low-amplitude (ΔV ≈ 0.3 m ) irregular variabilitymodulated by large-scale cyclic variabilitywith an amplitude close to 0.2 m and a period (or quasi-period) of 5.4±0.1 yr. A detailed seasonal analysis of the data shows that the light curve of MWC 297 displays two types of photometric features: low-amplitude Algol-like fading with an amplitude close to 0.2 m and low-amplitude flares resembling the flares of UV Ceti stars, but being more powerful and having longer durations. The variations of the stellar brightness are accompanied by variations of the B-V and V -R colors: when the brightness decreases, B-V decreases, while V -R increases (the star reddens). The reddening law is close to the standard interstellar reddening law. Although the character of the brightness variability ofMWC 297 resembles the photometric activity of UX Ori type stars, which is due to variations of their circumstellar extinction, its scale is very far from the scales observed for UX Ori stars. It is difficult to reconcile the level of photometric activity with the idea that MWC 297 is observed through its own gas-dust disk viewed almost edge-on, as has been suggested in several studies.  相似文献   

19.
The formation of neutron stars in the closest binary systems (P orb<12 h) gives the young neutron star/pulsar a high rotational velocity and energy. The presence of a magnetic field of 3×1011–3×1013 G, as is observed for radio pulsars, enables the neutron star to transfer ~1051 erg of its rotational energy to the envelope over a time scale of less than an hour, leading to a magnetorotational supernova explosion. Estimates indicate that about 30% of all type-Ib,c supernovae may be the products of magnetorotational explosions. Young pulsars produced by such supernovae should exhibit comparatively slow rotation (P rot>0.01 s), since a large fraction of their rotational angular momentum is lost during the explosion. The magnetorotational mechanism for the ejection of the envelope is also reflected by the shape of the envelope. It is possible that the Crab radio pulsar is an example of a product of a magnetorotational supernova. A possible scenario for the formation of the close binary radio pulsar discovered recently by Lyne et al. is considered.  相似文献   

20.
A new catalog of 8382 close quasar-galaxy pairs is presented. The catalog was composed using published catalogs of quasars and active galactic nuclei containing 11358 objects, as well as the LEDA catalog of galaxies, which contains on the order of 100 thousand objects. Based on these new data, the dependence of the number of pairs on a=z G /z Q is analyzed, where z G and z Q are the redshifts of the galaxy and quasar, respectively, revealing an excess of pairs with a<0.1 and a>0.9. This means that the galaxies in pairs are preferably located close to either the observer or the quasar and avoid intermediate distances along the line of sight to the quasar. Computer simulations demonstrate that it is not possible to explain this number of pairs with the observed distribution in a as the result of chance positional coincidences with a uniform spatial distribution of galaxies. Data on globular clusters show that the excess of pairs with a<0.1 and a>0.9 is consistent with the hypothesis that we are observing distant compact objects that are strongly gravitationally lensed by transparent lenses with a King mass distribution located in the halos of nearby galaxies. The Hubble diagram for galaxies and quasars is presented. Observational tests of the mesolensing hypothesis are formulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号