首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
English sole, Parophrys vetulus, spawn in shelf waters off the west coast of North America and early development occurs in coastal waters. Near metamorphosis, however, larvae recruit to nearshore and estuarine nursery areas, an uncommon life-history feature for a species in this region. Recruitment of larval P. vetulus to Yaquina Bay, Oregon, was sampled with moored nets on a weekly basis. Recruitment began during night flood tides in late February and was characterized by three peaks during the season. Planktonic recruitment continued into June, whereas benthic juveniles began to emigrate from the estuary in late May.The data suggest that two developmental stages of recruits immigrated to Yaquina Bay. The first are newly transforming larvae which enter the bay earliest within each peak of recruitment; peaks of abundance are related to onshore Ekman transport. This transport also brings larvae to shallow areas along the open coast where they settle. These transforming stages are still capable of pelagic swimming activity and continue to recruit to the estuary, typically swimming deeper in the water column than the early stages. Estuarine factors, particularly bottom salinity at the end of ebb tide, are most strongly correlated with recruitment of these stages. It seems that tidal stream transport is the primary mechanism used by English sole to recruit to the estuary, but the mechanism of locating the estuary and timing of entry is relatively complex.  相似文献   

2.
《Journal of Sea Research》2007,57(2-3):198-208
Dover sole (Microstomus pacificus) and rex sole (Glyptocephalus zachirus) are both commercially valuable, long-lived pleuronectids that are distributed widely throughout the North Pacific. While their ecology and life cycle have been described for southern stocks, few investigations have focused on these species at higher latitudes. We synthesized historical research survey data among critical developmental stages to determine the distribution of life cycle stages for both species in the northern Gulf of Alaska (GOA). Bottom trawl survey data from 1953 to 2004 (25 519 trawls) were used to characterize adult distribution during the non-spawning and spawning seasons, ichthyoplankton data from 1972 to 2003 (10 776 tows) were used to determine the spatial and vertical distribution of eggs and larvae, and small-meshed shrimp trawl survey data from 1972 to 2004 (6536 trawls) were used to characterize areas utilized by immature stages. During the non-spawning season, adult Dover sole and rex sole were widely distributed from the inner shelf to outer slope. While both species concentrated on the continental slope to spawn, Dover sole spawning areas were more geographically specific than rex sole. Although spawned in deep water, eggs of both species were found in surface waters near spawning areas. Dover sole larvae did not appear to have an organized migration from offshore spawning grounds toward coastal nursery areas, and our data indicated facultative settling to their juvenile habitat in winter. Rex sole larvae progressively moved cross-shelf toward shore as they grew from April to September, and larvae presumably settled in coastal nursery areas in the autumn. In contrast with studies in the southern end of their range, we found no evidence in the GOA that Dover or rex sole have pelagic larval stages longer than nine months; however, more sampling for large larvae is needed in winter offshore of the continental shelf as well as sampling for newly settled larvae over the shelf to verify an abbreviated pelagic larval stage for both species at the northern end of their range.  相似文献   

3.
We report the size, abundance, and distribution (horizontal, vertical) of northern rock sole, Lepidopsetta polyxystra, larvae collected from ichthyoplankton surveys on the southeastern Bering Sea shelf near Unimak Island, in Unimak Pass, and in the Gulf of Alaska south of Unimak Island. The greatest abundances of larvae occurred within Unimak Pass and in the Bering Sea northeast of Unimak Island. Larvae were smaller and more abundant in 2002 than in 2003. Larval abundance and size varied with depth. Highest abundances were at depths of 10-30 m during the day, and larger fish appeared to migrate from below 20 m to 0-10 m at night. There was evidence of multiple spawning locales and larval dispersal pathways that were depth- and area-specific. Northern rock sole larvae spawned west of Unimak Pass along the Aleutian Islands may be transported northward by the Bering Slope Current. Larvae spawned in the Gulf of Alaska and advected through Unimak Pass are differentially dispersed, primarily to the middle and outer shelves along the 100 m and 200 m isobaths, or along the Alaska Peninsula. Larvae spawned along the Alaska Peninsula east of Unimak Island appear to have the greatest chance of being transported to nursery areas in the coastal domain. Dispersal of near-surface northern rock sole larvae in any of these locations is likely influenced by wind-driven advection, but below-surface (>10 m) northern rock sole larval transport is probably more affected by factors that modulate geostrophic flow rather than wind-driven surface currents.  相似文献   

4.
Spawning in Greenland halibut (Reinhardtius hippoglossoides) occurs along the continental slope and in submarine canyons in the eastern Bering Sea. It is assumed that these bathymetric features and their associated circulation patterns deliver eggs and larvae to suitable nursery habitats over the continental shelf. However, there have been no directed field studies examining spawning areas or transport of Greenland halibut early life stages in the Bering Sea, nor is it known how large-scale oceanographic forcing modulates specific physical mechanisms of delivery. The present study was undertaken to: better define spawning areas of Greenland halibut, examine development and distribution of larvae, and understand the influence of climate variations on interannual patterns of transport, distribution and abundance. Eggs were found in Bering and Pribilof Canyons and over the adjacent slope in February and early March, confirming that spawning occurs in these regions. Larvae were present over the slope, outer shelf and middle shelf in winter and spring, and settled juveniles were collected over the shelf in September. Oceanographic modeling approaches that simulate larval advection from spawning to nursery habitats indicate that depth-discrete variations in transport pathways from submarine canyons to the adjacent shelf contribute to interannual variability in transport trajectories. Overall, our results highlight specific physical mechanisms of delivery that are modulated by large-scale atmospheric and oceanographic forcing, potentially varying the degree of slope–shelf connectivity for Greenland halibut and other slope-spawning species.  相似文献   

5.
The spawning habitat of Emmelichthys nitidus (Emmelichthyidae) in south-eastern Australia is described from vertical ichthyoplankton samples collected along the shelf region off eastern through to south-western Tasmania during peak spawning in October 2005–06. Surveys covered eastern waters in 2005 (38.8–43.5°S), and both eastern and southern waters in 2006 (40.5°S around to 43.5°S off the south-west). Eggs (n = 10,393) and larvae (n = 378) occurred along eastern Tasmania in both years but were rare along southern waters south and westwards of 43.5°S in 2006. Peak egg abundances (1950–2640 per m−2) were obtained off north-eastern Tasmania (40.5–41.5°S) between the shelf break and 2.5 nm inshore from the break. Eggs were up to 5-days old, while nearly 95% of larvae were at the early preflexion stage, i.e. close to newly emerged. Average abundances of aged eggs pooled across each survey declined steadily from day-1 to day-5 eggs both in 2005 (97-18) and 2006 (175-34). Moreover, day-1 egg abundances were significantly greater 2.5 nm at either side of the break, including at the break, than in waters ≥5 nm both inshore and offshore from the break. These results, complemented with egg and larval data obtained in shelf waters off New South Wales (NSW; 35.0–37.7°S) in October 2002–03, indicate that the main spawning area of E. nitidus in south-eastern Australia lies between 35.5°S off southern NSW and 43.5°S off south-eastern Tasmania, and that spawning activity declines abruptly south and westwards of 43.5°S around to the south-west coast. In addition, quotient analyses of day-1 egg abundances point to a preferred spawning habitat contained predominantly within a 5 nm corridor along the shelf break, where waters are 125–325 m deep and median temperatures 13.5–14.0 °C. Spawning off eastern Tasmania is timed with the productivity outburst typical of the region during the austral spring, and the temperature increase from the mixing between the southwards advancing, warm East Australian Current and cooler subantarctic water over the shelf. Overall, ichthyoplankton data, coupled with reproductive information from adults trawled off Tasmania, indicate that E. nitidus constitutes a suitable species for the application of the daily egg production method (DEPM) to estimate spawning biomass. This finding, together with evidence in support of a discrete eastern spawning stock extending from southern NSW to southern Tasmania, strengthens the need for DEPM-based biomass estimates of E. nitidus prior to further fishery expansion.  相似文献   

6.
Walleye pollock (Theragra chalcogramma) is an ecologically and economically important groundfish in the eastern Bering Sea. Its population size fluctuates widely, driving and being driven by changes in other components of the ecosystem. It is becoming apparent that dramatic shifts in climate occur on a decadal scale, and these “regime shifts” strongly affect the biota. This paper examines quantitative collections of planktonic eggs and larvae of pollock from the southeastern Bering Sea during 1976–1979. Mortality, advection, and growth rates were estimated, and compared among the years encompassing the 1970s’ regime shift. These data indicate that pollock spawning starts in late February over the basin north of Bogoslof Island. Over the shelf, most spawning occurs north of Unimak Island near the 100 m isobath in early or mid April. Pollock eggs are advected to the northwest from the main spawning area at 5–10 cm/sec. Larvae are found over the basin north of Bogoslof Island in April, and over the shelf between Unimak Island and the Priblof Islands in May. Compared to 1977, the spawning period appeared to be later in 1976 (a cold year) and earlier in 1978 (a warm year) in the study area. At the lower temperatures in 1976, egg duration would be longer and thus egg mortality would operate over a longer period than in the other years. Mean larval growth appeared to be lower in 1976 than in 1977 and 1979. Estimated egg mortality rate in 1977 was 0.6 in April and 0.3 in early May.  相似文献   

7.
This paper reports on the composition, abundance and distribution of the larval fish assemblage in the nearshore coastal waters off the St Lucia Estuary mouth, South Africa. Ichthyoplankton samples were collected over a 12 month period from five stations located along a transect up to 2·5 km offshore, and from two stations north and south of the estuary mouth, respectively. In all, 6126 fish larvae, representing 89 families and 186 species, were collected. Larvae in the families Myctophidae and Tripterygiidae comprised 21% and 16% of the total catch, respectively. The most abundant species were an unidentified triplefin, Tripterygiid 1 and the lanternfish Benthosema fibulatum, together which contributed nearly 18% of the total catch. Larvae of marine spawners independent of estuaries dominated the catch both in terms of density (90%) and in terms of number of taxa (89%). Some larvae of estuarine-associated species were present, in addition to a few specimens of estuarine resident species. Overall the dominant environmental variable affecting larval densities was temperature, particularly for Trypterygiid 1 where temperature contributed to 9% of the variance model. Densities of fish larvae peaked in November and December 1990 (late spring and early summer) and were lowest from January to June 1991 (summer, autumn an early winter). Different taxa dominated the catch each month with reef- and shelf-associated species accounting for the peak in August and September 1990, oceanic species in November 1990 and a mixture of the two groups in December. Overall larval densities were significantly higher in bottom samples with a trend of increasing densities offshore for reef and shelf taxa. The larvae of reef and shore taxa were predominantly preflexion larvae, whilst the few estuarine spawner species that were collected were mainly postflexion. Ontogenetic patterns related to depth and distance offshore were evident for the dominant species in each estuarine-association category.The present study has shown that temporal and spatial variations in the larval fish assemblage off St Lucia are related to environmental conditions and ontogenetic behavioural patterns of certain species. The origin of many of the larvae in the assemblages off the coast of St Lucia is probably from both local spawning populations in the shelf waters off KwaZulu-Natal and spawning populations farther north in shelf waters off Mozambique. Additional studies with more detailed oceanographic measurements will further our understanding of the physical processes that supply larvae to the St Lucia region.  相似文献   

8.
Seasonal and short-term variability of environmental parameters influence the spawning strategies of fish species. In this study, the spawning strategies and the transport of early stages of the two Cape hake species off South Africa were investigated. Distribution of eggs and larvae of Merluccius paradoxus and M. capensis was analysed in order to derive more detailed and species-specific information on spawning season, spawning location, and transport of early stages. Samples were collected during three pilot surveys between January and October 2007 and during an extensive survey in September/October 2008 in the southern Benguela upwelling system off South Africa. Eggs and larvae of M. paradoxus were found in greater numbers than those of M. capensis during all surveys. Highest abundances were found from September to October, indicating one spawning peak for M. paradoxus during late austral winter to spring. The western Agulhas Bank was identified as the primary spawning ground, and smaller spawning events occurred on the West Coast. Larvae of both species were mainly distributed in subsurface waters between 25 and 100 m. More than 50% of all larvae caught had a total length between 3 and 4 mm and size increased significantly with decreasing latitude. Merluccius capensis were found closer inshore than M. paradoxus, indicating that early stages of the two species followed separate drift routes. We assume that this distribution pattern most likely evolved from differences in spawning location and phenology. The spawning strategies of M. paradoxus and M. capensis are well adapted to a time-frame of optimal transport conditions favourable for larval survival in the highly variable environment of the southern Benguela upwelling system, but the peak spawning of the two species is separated in time and space.  相似文献   

9.
Cape hake in Namibian waters are demersal and mesopelagic spawners, spawning peaking offshore between 100 and 400 m deep, depending on local environmental conditions. The cross-shelf circulation, low-oxygen layers and mesoscale gyres are three important environmental factors influencing hake spawning behaviour and subsequent transport of the spawning products. Normally, hake spawn offshore near the bottom at depths of 150–400 m. However, during one cruise, spawning was concentrated below several subsurface mesoscale gyres, resulting in reduced dispersion of the eggs and larvae. When the low-oxygen layer above the bottom is pronounced, hake spawning has been observed close to the top of the layer at oxygen concentrations as low as 0.2–0.3 m? ??1. The relatively small size of the eggs and their high specific gravity make them ascend quite slowly from the spawning depths, 10–40 m per day. Consequently, hake eggs spawned deeper than 200 m hatch before they reach the upper mixed layer. The newly hatched larvae are relatively undeveloped, without functional eyes or mouth, and display little swimming activity during their first hours, but laboratory observations have revealed subsequent periods of downward swimming activity. Based on current field observations, on buoyancy measurements of eggs and larvae and on observed larval behaviour, it is concluded that hake eggs and larvae are transported onshore by features of the upwelling subsurface circulation that compensate for offshore movement of surface water. This may be the basic mechanism concentrating early juvenile hake nearshore. Spawning activity near the low-oxygen layer might be a behavioural adaptation to minimize egg predation, because few other species are expected to survive such low concentrations of oxygen.  相似文献   

10.
We used an individual-based model of anchovy (Engraulis ringens) early life history coupled with hydrodynamic outputs from the regional oceanic modeling system (ROMS) to investigate the factors driving variability in egg and larval survival rates in the northern Humboldt upwelling region off Peru. Individuals were released within a coastal area and followed for a period of 30 days. Those that were still in the coastal area at that time were considered as retained. We investigated the spatial and temporal variability in the release locations of the individuals retained, and compared these to observed egg concentration patterns reconstructed from a 40-year period of monitoring. A first set of simulations using passive particles to represent anchovy eggs and larvae revealed a large sensitivity of the results to the initial vertical distribution of particles. We then conducted two additional sets of simulations that included the effect of egg buoyancy, larval vertical swimming behavior and lethal temperature. We obtained (1) maximal coastal retention close to the surface in winter and in deeper layers in summer, (2) a large influence of egg buoyancy and of larval vertical behavior on coastal retention in all seasons, (3) a partial match between dates and locations of enhanced retention and observed egg concentration patterns and (4) a low effect of lethal temperature on survival except when associated with high egg density. The model suggests that an optimal temporal spawning pattern for maximizing coastal retention would have two maximums, the most significant in austral winter and the second in summer. This pattern agrees roughly with observed spawning seasonality, but with temporal discrepancy of about two months in the peaks of both series. Spatially, we obtained higher retention from 10 S to 20 S, whereas the observed maximum egg concentration was located between 6°S and 14°S. Among the three sets of simulations, the one taking into account larval vertical swimming behavior lead to the best match with the data.  相似文献   

11.
This study focuses on the composition, abundance and distribution of ichthyoplankton in the inner shelf area off Bahía Blanca Estuary on the SW Atlantic Ocean during late spring. Eggs and larvae of Brevoortia aurea, Engraulis anchoita, Parona signata, Sciaenidae spp. – such as Cynoscion guatucupa and Micropogonias furnieri –, and Odontesthes argentinensis were found. Species richness was low probably as a result of season and shallow depths. Ichthyoplankton abundance reached values close to 10 000 per 10 m−3 (eggs) and 4000 per 10 m−3 (larvae) and displayed a spatial distribution pattern with maximum abundance values restricted to a band parallel to the coast. Differences between egg and larval patterns, probably derived from a different displacement and hydrodynamic behavior, were observed. Egg and larvae distribution patterns were found related with spawning areas and to directly depend on salinity and mesozooplankton. The larvae distribution pattern, in particular, was found to inversely depend on particulate organic carbon. In addition, the geographic location of egg and larvae maxima strongly coincided with a saline front reported for this area in springtime, thus suggesting a direct relationship with it.  相似文献   

12.
We explored the hypothesis that spawning ground locations of North Sea plaice reflect the locations of nursery grounds using drift scenarios based on a baroclinic, shallow-water circulation model (HAMSOM). The transport of pelagic eggs and larvae was simulated each year from 1975 to 2006 using in situ forcing, temperature-dependent development and stage-specific behaviour of eggs and larvae. This long-term simulation period also allowed us to explore climate effects. A release position was considered a potential and suitable spawning site if larvae from that area reached coastal nurseries after the onset of metamorphosis. In general, larvae were transported in an anti-clockwise direction and settled in nurseries that were relatively close to the release positions. Spawning locations that were offshore were poorly connected to nursery grounds while those closer to the shore had higher connectivity. Simulated suitable spawning locations broadly agreed with the main centres of egg production (English Channel, Southern Bight, German Bight), except for the known spawning grounds south of Dogger Bank. Over the 31-year simulation period, positive and negative trends in transport success were found for the western and eastern parts of the North Sea, respectively. Changes in the west (Flamborough Head) were mainly due to changes in water circulation patterns whereas those in the east (northern German Bight) were induced by changes in both currents and water temperature. The implications of these findings, and the significant correlation between changes in drift and recruitment, suggest that climate-driven changes in the suitability of nursery grounds will directly affect the distribution and productivity of plaice in the North Sea.  相似文献   

13.
Around Iceland, the west- and north-flowing coastal current, induced by freshwater runoff, provides a transport mechanism for pelagic eggs and larvae derived from the main spawning grounds off the southwest coast to the main nursery grounds off the north coast. In the present study, abundance and growth of larval and juvenile cod were recorded during a series of cruises conducted in June/July of 1998–2001 along the drift route southwest and west of Iceland. The cruises provided information on approximately 2–8-week-old individuals. Hatch dates and abundance varied greatly between years. Hatch dates ranged from Julian Day 92 to 167. Growth rate differed also between the years studied. Relative abundance was generally greatest in temperatures above 7.5 °C and in low-salinity waters, characteristic for the coastal current. The study demonstrates the link between the coastal current and larval/juvenile distribution, thus providing evidence for its importance in promoting successful recruitment of the Icelandic cod stock.  相似文献   

14.
Data collected in 1953 and 1954 by the U.S. Fish and Wildlife Service were statistically analyzed to ascertain where and when fish eggs and larvae are most abundant on the southeastern U.S. continental shelf. The results are related to some oceanographic processes that might affect the survival of larval fish. Along-shelf differences in numbers of eggs and larvae are minimal compared with differences that occur across the shelf. Highest numbers of fish larvae are found on the outer shelf during fall, winter and spring, but larvae are evenly distributed across the shelf in summer.Upwelling strongly influences the dynamics of plankton production on the outer shelf, and thus during most seasons of the year upwelling may be the most important process controlling the amount of food available to larval fish. During winter and spring, mean winds do not favor shoreward transport of larval fish from the outer shelf if the larvae are located in near-surface waters. Thus, during these seasons variability of winds on the ‘event’ time scale may be more important to onshore and offshore transport of larval fish than the mean strength and direction of monthly or seasonally averaged winds.  相似文献   

15.
As an integral part of the WEST study of the role of wind-driven transport in shelf productivity, HF radar currents are analyzed to determine typical surface flow patterns off Bodega Bay in northern California. Radar-derived surface trajectories and surface velocity divergences are used to determine the proximal origins and destinations of surface waters in the area. Surface trajectory results show a strong bimodality, with water over the entire shelf originating in the north under upwelling conditions and waters over the inner/mid-shelf originating in the south during relaxation conditions. Outer shelf waters have more variable transport patterns during relaxation conditions, with limited equatorward or onshore movements being most typical. The destinations of surface waters starting at the outer shelf are predominantly offshore, with the majority of particles exiting the radar domain west of Pt Reyes along the shelf edge in less than 2 days. Significant proportions of water from the inner/mid-shelf are exported southward and exit the radar domain inshore or within 20 km of the tip of Pt Reyes, creating possibilities for either nearshore retention in the Bodega region or entrainment of water into the Gulf of Farallons. Approximately 15% of all trajectories remained in the radar domain for 6 days, suggesting that a biologically significant percentage of larvae might be retained in the area for time periods approaching typical larval durations. Calculations of surface divergence indicate where vertical flux may be significant. An extensive area of positive divergence is observed off Bodega during upwelling conditions, while weakly convergent flow is observed where upwelling flows approach Pt Reyes. Positive divergence also is observed during relaxation periods when poleward flow separates from the shore just north of Pt Reyes. Estimates of vertical flux in these divergence zones point to a significant contribution of recently upwelled waters to the observed horizontal fluxes at the surface. Determination of the ultimate source and fate of phytoplankton-rich waters requires further analysis of the detailed time dependence of phytoplankton concentration relative to the time dependence of wind-forced currents.  相似文献   

16.
In recent years, sardine Sardinops sagax spawning has been recorded inshore off central Namibia. Field observations on eggs and laboratory measurements show that spawning, demonstrated by the distribution of newly spawned eggs, takes place just below the upper mixed layer. The high positive buoyancy of the eggs causes them to ascend rapidly to the surface layer, where they are moved offshore by upwelling-induced offshore transport. However, increased wind-induced mixing also influences the vertical distribution of eggs, causing them to be partly mixed down below the layer moving offshore and into the layer moving inshore. This mechanism acts to retard the transport and offshore loss of eggs from the spawning areas. The vertical distribution of sardine larvae, with highest concentrations deeper than 20 m, indicates active movement out of the layer moving offshore, and this tendency seems to be more pronounced for older larvae. Hence, vertical migration of larvae is an additional factor mitigating their loss from nearshore. Taken together, these features seem to minimize the offshore loss of offspring, particularly in periods of low stock biomass when spawning close to the shore seems to be common.  相似文献   

17.
While many of New Zealand’s freshwater fishes undertake larval migrations as part of their amphidromous life-history, little is known of the larval stages of these fish. Torrentfish (Cheimarrchthys fosteri), a New Zealand endemic, amphidromous, riffle specialist are particularly enigmatic; their spawning sites and behaviours are unknown, and larvae have never been collected either emigrating from freshwater or during their marine feeding phase. During summer drift sampling, we captured unidentified fish larvae emigrating downstream in the Waianakarua River, South Island, New Zealand. Based on multiple lines of evidence (meristic comparisons with adults, morphology, time of capture, and adult fish populations of the Waianakarua) we identify these larvae as torrentfish. This represents the first time torrentfish larvae have been captured or identified, laying the foundations for future studies into the early life-history and ecology of this unique and threatened fish.  相似文献   

18.
Fronts and eddies are widely hypothesized to be critical spawning habitat for large pelagic fishes, due to increased larval and/or adult feeding opportunities at these features. We examined sailfish (Istiophorus platypterus) spawning around a cyclonic, submesoscale (∼13 × 7 km) Florida Current frontal eddy. The temporal progression of eddy dynamics over a 65 h period was determined using ocean color satellite imagery, continuous surface measurements along the cruise track, and non-linear least-squares fitting of the positions of three drifters deployed within the eddy. A peak in larval sailfish densities (n = 2435, stations = 49), composed primarily of yolk-sac and first-feeding larvae, occurred at the eddy frontal zone. A majority of these larvae were estimated to have been spawned during the formation of the eddy. A comparison between the distribution of similar-age sailfish and scombrid larvae indicated that the peak in larval sailfish density likely resulted from spawning directly at the front, rather than transport by convergent flow. The first-feeding prey items of larval sailfish (Farranula and Corycaeus copepods) were most abundant at the frontal zone and to a lesser extent inside the eddy. Egg distributions were used to indirectly assess the distribution of adult sailfish prey items. Euthynnus alleteratus and Auxis spp. eggs were in highest abundance outside the eddy, while the eggs of small carangids were in highest abundance at the eddy frontal zone. Overall, this study indicates that sailfish spawn at small-scale oceanographic features that provide a favorable feeding environment for their larvae and potentially also for the adults.  相似文献   

19.
Similarities in the marine fauna found off the coasts of southern Madagascar and KwaZulu-Natal Province (KZN), South Africa, led to the development of the ‘suitcase project,’ with the aim of establishing whether eddies that form off southern Madagascar may package and transport biological material across the Mozambique Channel, facilitating connectivity and gene flow. Meroplankton (larval stages of fishes and benthic invertebrates) were collected on the Madagascan shelf and along a transect through a cyclonic eddy in the Mozambique Channel. The samples were analysed using microscopy and DNA barcoding, seeking to identify species known to be common to both the southeast coast of Madagascar and the east coast of South Africa and thereby to reveal potential indicators of connectivity between these regions. The greatest zooplankton biovolume in the upper 200 m occurred on the shelf, followed by in the western part of the eddy and in the region outside the eddy to the west, and was lowest in the region outside the eddy to the east. The meroplankton were dominated by taxa of coastal origin and these were also most abundant on the shelf and in the western part of the eddy, with the lowest abundances in the region outside the eddy to the east. The findings show greater zooplankton biovolumes and larval abundances and the presence of reef-associated larval assemblages on the Madagascan shelf and along the transect through the cyclonic eddy, providing support for the suitcase hypothesis that planktonic organisms are entrained within eddies as they propagate south-westwards of the Madagascan shelf.  相似文献   

20.
Larvae of estuarine organisms continually face possible export from the parent estuary. Retention of larvae of the estuarine crab Rhithropanopeus harrisii was investigated in the upper Newport River estuary, North Carolina. All of the developmental stages occurred in the same area of the estuary with similar horizontal distributions, and the concentrations of intermediate and late stages were not greatly reduced from those of the first larval stage. This was strong evidence for the continuous retention of larvae in the upper estuary.To determine mechanisms by which retention might be effected, field studies of the vertical distributions and migrations of these larvae were made. The four zoeal stages had similar but complex vertical migration patterns, which varied from study to study. These migrations centered on the depth of no net flow, reducing longitudinal transport during development. Cross-spectral analysis of the larval migrations and the environmental cycles of light, salinity and current speed revealed that each of these external cycles affected larval depth. Megalopae of R. harrisii also migrated vertically, but they were present in much lower concentrations than the zoeal stages, an indication of a change to benthic existence in this final larval form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号