首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
John Cleary 《Tectonophysics》1973,20(1-4):241-248
There have been eight large-scale refraction experiments in Australia during the last fifteen years. P1 velocities derived from these experiments are significantly higher in the Precambrian shield region than in eastern Australia. Pn-velocities are also higher beneath the shield, and appear to increase systematically from east to west across the continent. There is good evidence for an intermediate layer in all parts of Australia, with an average depth of about 20 km to the Conrad discontinuity. The crustal thickness has an average value of about 40 km, and the observed variations in thickness are apparently unrelated to topography in most cases.  相似文献   

2.
We present a summary of the available information on Rayleigh-wave dispersion data for the Fennoscandian region. The observations have been combined to produce regional dispersion relations which have then been subjected to the “hedgehog” inversion procedure. The results are presented on a map outlining the thickness of the lid and the shear velocities in both the lid and the asthenosphere channel. Lid thickness up to around 135 km is found in the Bothnia-north-central Finland area with, if any, weak shear velocity contrast to the underlying layer. The surrounding areas are characterized by lid thickness up to around 75 km; a stronger low-velocity zone to lid contrast may be found in the Caledonian and Baltic Sea area (0.25÷0.45 km/s). Taking into account Moho depth data and the aforementioned results, a map of the lithosphere-asthenosphere system was derived.  相似文献   

3.
Experimental studies were carried out in laboratory in order to investigate the effects of fracture on compressional (P) wave and shear (S) wave velocity propagation and therefore the relations between seismic properties and rock mass parameters. The discontinuity index, Id, fracture density parameter C, linear fracture parameter Γ and the rock quality designation (RQD) were used to describe the rock mass parameters. These parameters are analyzed and then related to the seismic properties. Four vertical aligned fractures were created on an intact calcarenite block, 0.6 m long, 0.4 m thick and 0.4 m width, by sawing. The measures were carried out in four different blocks of cacarenite, having the same physical properties, and in four different phases: in first block the fractures were filled with air; in the second block the fractures were filled with “terra rossa”; in third block the fractures were filled with wet “terra rossa” and in the fourth block the fractures were filled with clay. The test results were statistically analysed using the method of least squares regression and polynomial relationships with high correlation coefficient were found between the fractured rock parameters and P-wave, S-wave velocities and Vp/Vs ratio. The investigations suggest that the P-wave and S-wave velocities decrease with increasing the fracture parameters, while the Vp/Vs ratio increases with decreasing the fracture parameters.

Furthermore the results of the experimental studies were applied on the seismic refraction tomography data acquired in a great measurements campaign undertaken in the Adriatic salentina coast (south Italy) in order to monitor the coastal erosion.

The geophysical results, using the polynomial relationships between the fractured rock parameters and P-wave velocity, are in good agreement with the geomorphological and geological results.  相似文献   


4.
A unique feature of the Circum Pacific orogenic belts is the occurrence of ophiolitic bodies of various sizes, most of which display petrological and geochemical characteristics typical of supra-subduction zone oceanic crust. In SE Asia, a majority of the ophiolites appear to have originated at convergent margins, and specifically in backarc or island arc settings, which evolved either along the edge of the Sunda (Eurasia) and Australian cratons, or within the Philippine Sea Plate. These ophiolites were later accreted to continental margins during the Tertiary. Because of fast relative plate velocities, tectonic regimes at the active margins of these three plates also changed rapidly. Strain partitioning associated with oblique convergence caused arc-trench systems to move further away from the locus of their accretion. We distinguish “relatively autochthonous ophiolites” resulting from the shortening of marginal basins such as the present-day South China Sea or the Coral Sea, and “highly displaced ophiolites” developed in oblique convergent margins, where they were dismantled, transported and locally severely sheared during final docking. In peri-cratonic mobile belts (i.e. the Philippine Mobile Belt) we find a series of oceanic basins which have been slightly deformed and uplifted. Varying lithologies and geochemical compositions of tectonic units in these basins, as well as their age discrepancies, suggest important displacements along major wrench faults.We have used plate tectonic reconstructions to restore the former backarc basins and island arcs characterized by known petro-geochemical data to their original location and their former tectonic settings. Some of the ophiolites occurring in front of the Sunda plate represent supra-subduction zone basins formed along the Australian Craton margin during the Mesozoic. The Philippine Sea Basin, the Huatung basin south of Taiwan, and composite ophiolitic basements of the Philippines and Halmahera may represent remnants of such marginal basins. The portion of the Philippine Sea Plate carrying the Taiwan–Philippine arc and its composite ophiolitic/continental crustal basement might have actually originated in a different setting, closer to that of the Papua New Guinea Ophiolite, and then have been displaced rapidly as a result of shearing associated with fast oblique convergence.  相似文献   

5.
This paper reports the integrated application of petrographic and Sm–Nd isotopic analyses for studying the provenance of the Neoproterozoic Maricá Formation, southern Brazil. This unit encompasses sedimentary rocks of fluvial and marine affiliations. In the lower fluvial succession, sandstones plot in the “craton interior” and “transitional continental” fields of the QFL diagram. Chemical weathering probably caused the decrease of the 147Sm/144Nd ratios to 0.0826 and 0.0960, consequently lowering originally > 2.0 Ga TDM ages to 1.76 and 1.81 Ga. 143Nd/144Nd ratios are also low (0.511521 to 0.511633), corresponding to negative εNd present-day values (− 21.8 and − 19.6). In the intermediate marine succession, sandstones plot in the “dissected arc” field, reflecting the input of andesitic clasts. Siltstones and shales reveal low 143Nd/144Nd ratios (0.511429 to 0.511710), εNd values of − 18.1 and − 23.6, and TDM ages of 2.16 and 2.37 Ga. Sandstones of the upper fluvial succession have “dissected arc” and “recycled orogen” provenance. 143Nd/144Nd isotopic ratios are also relatively low, from 0.511487 to 0.511560, corresponding to εNd values of − 22.4 and − 21.0 and TDM of 2.07 Ga. A uniform granite–gneissic basement block of Paleoproterozoic age, with subordinate volcanic rocks, is suggested as the main sediment source of the Maricá Formation.  相似文献   

6.
Belemnites are valuable strain markers and can be used to determine the elongation that has been suffered by the matrix in which they are situated. Experiments simulating the development of stretched belemnites have been performed to verify their deformation history. The analysis of the experimental results is used in the interpretation of field examples collected from Leytron, Valais, Switzerland. The amount of strain suffered by Leytron belemnites has been evaluated using the “least square” method and the result has been compared with that obtained by the “average elongation” method. The relationship between the final orientation of the whole specimen (θ′b) and that of the fragments (θ′f) demonstrates that the Leytron belemnites have suffered an irrotational type of deformation.  相似文献   

7.
周蒂  孙珍  杨少坤  林鹤鸣 《地球科学》2011,36(5):789-797
曾母盆地是南沙海区研究和勘探程度较高的盆地, 其地层系统一直是建立整个南沙海区地层系统的重要依据.然而由于盆地沉积厚度大和横向相变快等原因, 对曾母盆地的分层方案和地层时代的认识存在很大分歧.为了给曾母盆地甚至南沙海区的油气勘探中地层划分对比和地震剖面的解释提供基础依据, 在搜集整理和分析国外有钻井控制的地震剖面和分层方案的基础上, 提出了一个实用的、便于与南海北部盆地对比的曾母盆地地层划分对比方案.将中海油对南海北部诸盆地制定的一套地层界面编号系统和地矿部广州海洋地质局对曾母盆地地层的命名结合起来, 并根据国外在曾母盆地获得的钻探和联井地震测线资料对界面的时代作了一定调整, 将曾母盆地基底以上的地层划分为4组1群(曾母组、立地组、海宁组、南康组、北康群), 之间由5个重要不整合面(Tg、T60、T40、T32、T30) 相分隔.还将该方案与国内外其他方案进行了对比和讨论, 以供阅读有关资料时参考.为了方便将这套地层系统应用于地震剖面的解释和分析, 用实例显示了同一地层中由于地层相变而造成的地震相的巨大变化, 以及各重要不整合面的特征及其在地震剖面上的表现.   相似文献   

8.
In recent years the northwestern Black Sea has been investigated by a great number of geophysical methods. Charts of the M discontinuity and (isopachous) charts of the “granitic”, the “basaltic”, the Paleozoic, the Jurassic-Triassic, the Upper and Lower Cretaceous and the Eocene layers were plotted based on the results of the combined data of these investigations together with associated drilling data. The data for different velocity levels confirms the concept of layered-block structure of the crust, where large blocks are divided by deep faults penetrating to the upper mantle. Sedimentation within each block is continuous while reverse fault zones, dividing the East European Platform with a crustal thickness of more than 40 km and the Scythian Platform with a crust of about 30 km thick, and the latter from the Black Sea depression with crust of about 20 km, are discontinuous. Therefore, one can speak of a continuous-discontinuous nature of the sedimentation.

An inverse relationship in thicknesses of the “granitic” and sedimentary layers has been established. In places of intensive sedimentation the thickness of the “granitic” layer is less than that within the stable unsagging blocks. On the whole the greater the thickness of “basaltic” layer, the greater is the crustal thickness.

The relationship between the main geological structures of the area should be sought in the nature of structure of these “granitic” and “basaltic” layers.  相似文献   


9.
Extrusion temperatures for basaltic lavas in the Permo-Carboniferous Oslo Rift, estimated from whole rock major element compositions, are estimated to be 1270 to 1340°C. This means that magmatism during the Oslo rifting event was not associated with a large temperature anomaly in the underlying upper mantle. Partial melting is believed to be caused by a combination of crustal extension, a weak temperature anomaly in the underlying asthenosphere, and/or high fluid-contents in the mantle source region (“wet-spot”). Petrological and gcochemical data imply that large masses of cumulate rocks were deposited in the deep crust during the Oslo rifting event. The densities and seismic velocities (Vp) of these cumulate rocks are estimated to be 2.8–3.5 g/cm3 and 7.5–8.0 km/s. A rough estimate suggests that cumulus minerals alone account for a net transfer of at least 2 × 1017 kg of magmatic material from the mantle into the deep crust. In addition comes material representing

1. (a) cumulate minerals corresponding to eroded magmatic surface and subsurface rocks

2. (b) intercumulus material, and

3. (c) magmas crystallized to completion in the deep crust.

Estimates based exclusively on geophysical data tend to underestimate the true transfer of mass into the lower crust as gabbroic cumulate rocks, and melts crystallizing to completion in the lower crust have densities and seismic velocities similar to those of lower crustal wallrocks.  相似文献   


10.
David R. Nelson 《Lithos》1989,22(4):265-274
Kimberlites which intruded the Sisimiut (formerly Holsteinsborg) region of central west Greenland during the Early Palaeozoic have initial 87Sr/86Sr between 0.7028 and 0.7033 and εNd between + 1.3 and + 3.9. Mid-Proterozoic potassic lamproites from the same region have initial 87Sr/86Sr between 0.7045 and 0.7060, εNd between −13 and −10 and unradiogenic initial Pb isotopic compositions. The isotopic data favour an asthenospheric mantle source for the kimberlite magmas, in common with “basaltic” kimberlites from other localities, whereas the lamproite magma sources evolved in isolation from the convecting mantle for > 1000 Ma, probably within the subcontinental lithospheric mantle of the Greenland craton, prior to emplacement of the lamproites.  相似文献   

11.
南海69柱粒度数据分析表明,晚更新世以来,粒度在0.2~11μm的标度范围内具有分形特征,粒度分维值DS为1.72~2.02,平均1.84;不同时期粒度分维值明显不同,氧同位素1期(冰后期)为1.88,氧同位素2期(冰期)为1.81,温暖的冰后期粒度分维值高且变化幅度大,寒冷的冰期粒度分维值低且变化幅度小,表明粒度分维值DS对沉积物的形成环境演化具有良好的指示意义。运用R/S分析法,对69柱沉积物的粒度分维值DS、UK37法估算的表层海水古温度、浮游有孔虫的δ18O、δ13C及其转换函数计算的冬季表层海水古温度、夏季表层海水古温度、季节性温差、沉积物SiO2、CaCO3含量9项指标进行尺度重整分析计算,得到其时间序列分维值DH分别为1.2855、1.1712、1.2659、1.4244、1.2719、1.2214、1.2979、1.1366、1.1609。虽然这些气候指标是用不同物理单位测量的,但运用分形分析可以对它们进行数学比较,粒度分维值DS与季节性温差二者的时间序列分维值DH最接近,从分形理论方面进一步证实粒度分维值DS的变化主要反映气候的冷暖变化。综合粒度分维值DS及其他气候代用指标分析,识别出南海东部全新世以来的4次突发事件。  相似文献   

12.
Minor granulites (believed to be pre-Triassic), surrounded by abundant amphibolite-facies orthogneiss, occur in the same region as the well-documented Triassic high- and ultrahigh-pressure (HP and UHP) eclogites in the Dabie–Sulu terranes, eastern China. Moreover, some eclogites and garnet clinopyroxenites have been metamorphosed at granulite- to amphibolite-facies conditions during exhumation. Granulitized HP eclogites/garnet clinopyroxenites at Huangweihe and Baizhangyan record estimated eclogite-facies metamorphic conditions of 775–805 °C and ≥15 kbar, followed by granulite- to amphibolite-facies overprint of ca. 750–800 °C and 6–11 kbar. The presence of (Na, Ca, Ba, Sr)-feldspars in garnet and omphacite corresponds to amphibolite-facies conditions. Metamorphic mineral assemblages and PT estimates for felsic granulite at Huangtuling and mafic granulite at Huilanshan indicate peak conditions of 850 °C and 12 kbar for the granulite-facies metamorphism and 700 °C and 6 kbar for amphibolite-facies retrograde metamorphism. Cordierite–orthopyroxene and ferropargasite–plagioclase coronas and symplectites around garnet record a strong, rapid decompression, possibly contemporaneous with the uplift of neighbouring HP/UHP eclogites.

Carbonic fluid (CO2-rich) inclusions are predominant in both HP granulites and granulitized HP/UHP eclogites/garnet clinopyroxenites. They have low densities, having been reset during decompression. Minor amounts of CH4 and/or N2 as well as carbonate are present. In the granulitized HP/UHP eclogites/garnet clinopyroxenites, early fluids are high-salinity brines with minor N2, whereas low-salinity fluids formed during retrogression. Syn-granulite-facies carbonic fluid inclusions occur either in quartz rods in clinopyroxene (granulitized HP garnet clinopyxeronite) or in quartz blebs in garnet and quartz matrices (UHP eclogite). For HP granulites, a limited number of primary CO2 and mixed H2O–CO2(liquid) inclusions have also been observed in undeformed quartz inclusions within garnet, orthopyroxene, and plagioclase which contain abundant, low-density CO2±carbonate inclusions. It is suggested that the primary fluid in the HP granulites was high-density CO2, mixed with a significant quantity of water. The water was consumed by retrograde metamorphic mineral reactions and may also have been responsible for metasomatic reactions (“giant myrmekites”) occurring at quartz–feldspar boundaries. Compared with the UHP eclogites in this region, the granulites were exhumed in the presence of massive, externally derived carbonic fluids and subsequently limited low-salinity aqueous fluids, probably derived from the surrounding gneisses.  相似文献   


13.
Coexisting melt (MI), fluid-melt (FMI) and fluid (FI) inclusions in quartz from the Oktaybrskaya pegmatite, central Transbaikalia, have been studied and the thermodynamic modeling of PVTX-properties of aqueous orthoboric-acid fluids has been carried out to define the conditions of pocket formation. At room temperature, FMI in early pocket quartz and in quartz from the coarse-grained quartz–oligoclase host pegmatite contain crystalline aggregates and an orthoboric-acid fluid. The portion of FMI in inclusion assemblages decreases and the volume of fluid in inclusions increases from the early to the late growth zones in the pocket quartz. No FMI have been found in the late growth zones. Significant variations of solid/fluid ratios in the neighboring FMI result from heterogeneous entrapment of coexisting melts and fluids by a host mineral. Raman spectroscopy, SEM EDS and EMPA indicate that the crystalline aggregates in FMI are dominated by mica minerals of the boron-rich muscovite–nanpingite CsAl2[AlSi3O10](OH,F)2 series as well as lepidolite. Topaz, quartz, potassium feldspar and several unidentified minerals occur in much lower amounts. Fluid isolations in FMI and FI have similar total salinity (4–8 wt.% NaCl eq.) and H3BO3 contents (12–16 wt.%). The melt inclusions in host-pegmatite quartz homogenize at 570–600 °C. The silicate crystalline aggregates in large inclusions in pocket quartz completely melt at 615 °C. However, even after those inclusions were significantly overheated at 650±10 °C and 2.5 kbar during 24 h they remained non-homogeneous and displayed two types: (i) glass+unmelted crystals and (ii) fluid+glass. The FMI glasses contain 1.94–2.73 wt.% F, 2.51 wt.% B2O3, 3.64–5.20 wt.% Cs2O, 0.54 wt.% Li2O, 0.57 wt.% Ta2O5, 0.10 wt.% Nb2O5, 0.12 wt.% BeO. The H2O content of the glass could exceed 12 wt.%. Such compositions suggest that the residual melts of the latest magmatic stage were strongly enriched in H2O, B, F, Cs and contained elevated concentrations of Li, Be, Ta, and Nb. FMI microthermometry showed that those melts could have crystallized at 615–550 °C.

Crystallization of quartz–feldspar pegmatite matrix leads to the formation of H2O-, B- and F-enriched residual melts and associated fluids (prototypes of pockets). Fluids of different compositions and residual melts of different liquidus–solidus PT-conditions would form pockets with various internal fluid pressures. During crystallization, those melts release more aqueous fluids resulting in a further increase of the fluid pressure in pockets. A significant overpressure and a possible pressure gradient between the neighboring pockets would induce fracturing of pockets and “fluid explosions”. The fracturing commonly results in the crushing of pocket walls, formation of new fractures connecting adjacent pockets, heterogenization and mixing of pocket fluids. Such newly formed fluids would interact with a primary pegmatite matrix along the fractures and cause autometasomatic alteration, recrystallization, leaching and formation of “primary–secondary” pockets.  相似文献   


14.
Marine carbon cycle of the South China Sea is an important part of global carbon cycle. Researches on the air-sea CO2 flux in the South China Sea will help us understand the global carbon cycle and improve the global carbon system parameter database. This paper concisely summarized the changes of partial pressure of CO2 (pCO2), air-sea CO2 fluxes (FCO2), and related environmental factors in four regions in domains in the South China Sea. The low-salinity area of the upper reaches of the Pearl River estuary in the northern of South China Sea shelf area acted as a strong source of atmospheric CO2, with high pCO2(405.3~810.6 Pa)all year round. The lower area of the Pearl River estuary (salinity > 33.7) acted as a weak sink of CO2 in winter, with relatively low pCO2 (35.2~37.0 Pa). The northern slope/basin in the South China Sea acted as a source of CO2 in warm seasons with a relatively high pCO2 (45.0 Pa), and acted as a sink of CO2 in cold seasons with a relatively low pCO2 (34.7 Pa). The west of the Luzon Strait acted as a sink of CO2 in spring, while it acted as a source of CO2 in other seasons, with relative high pCO2 (38.4~47.5 Pa) in winter. The central/southern basin in the South China Sea acted as sources of CO2, with relative high pCO2 (41.0 Pa) all the year. Generally, the estimation of annual sea-air CO2 fluxes showed that most domains in the South China Sea served as weak sources of atmospheric CO2. In the future, more researches should be focused on the time-series of sea surface pCO2 and the remote sensing of the sea-air CO2 fluxes.  相似文献   

15.
M. C. Tate  D. B. Clarke 《Lithos》1997,39(3-4):179-194
Late Devonian (385−370 Ma) granitoid intrusions in the Meguma Zone of southwestern Nova Scotia represent two geographically separate magmatic suites that show subtly different lithological, geochemical and isotopic characteristics. “Central intrusions” crop out with satellite mafic-intermediate intrusions, range in composition from granodiorite to leucogranite, contain two micas, have exclusively peraluminous compositions (molar A/CNK 1.1-1.3), variably high values for FeOT (0.4–6.0 wt.%), Ba (5–980 ppm), Y (6–50 ppm), Pb (2–50 ppm), Ga (11–53 ppm), 87Sr/86Sri (0.7081-0.7130), δ18O (9.8–13.0) and δ34S (4.5–11.9), in conjunction with low values for εNd (−1 to −6.5). In contrast, “peripheral plutons” crop out with synplutonic mafic-intermediate intrusions, range in composition from tonalite to leucogranite, may contain minor hornblende, have dominantly peraluminous compositions (molar A/CNK 0.9-1.3), variably high concentrations of TiO2 (0.1-1.1 wt.%), Al2O3 (12.0–19.7 wt.%), CaO (0.2–4.9 wt.%), Sr (7–720 ppm), Cr (3–111 ppm) and V (1–136 ppm), higher εNd values (−2.0 to 3.2), and lower values for 87Sr/86Sri (0.7040-0.7079), δ188O (7.6–10.5) and δ34S (0–4.6). Such regional diversity is explained by inferring that upper crustal contamination dominated the central granitoid compositions and mixing with mantle-derived mafic-intermediate magmas dominated peripheral granitoid compositions. However, additional contributions from heterogeneous lower crust cannot be excluded.  相似文献   

16.
We explore the variations of Rayleigh-wave phase-velocity beneath the East China Sea in a broad period range (5–200 s). Rayleigh-wave dispersion curves are measured by the two-station technique for a total of 373 interstation paths using vertical-component broad-band waveforms at 32 seismic stations around the East China Sea from 6891 global earthquakes.The resulting maps of Rayleigh-wave phase velocity and azimuthal anisotropy provide a high resolution model of the lithospheric mantle beneath the East China Sea. The model exhibits four regions with different isotropic and anisotropic patterns: the Bohai Sea, belonging to the North China Craton, displays a continental signature with fast velocities at short periods; the Yellow Sea, very stable unit associated with low deformation, exhibits fast velocities and limited anisotropy; the southern part of the East China Sea, with high deformation and many fractures and faults, is related to slow velocities and high anisotropic signature; and the Ryukyu Trench shows high-velocity perturbations and slab parallel anisotropy.  相似文献   

17.
Three types of fluid inclusions have been identified in olivine porphyroclasts in the spinel harzburgite and lherzolite xenoliths from Tenerife: pure CO2 (Type A); carbonate-rich CO2–SO2 mixtures (Type B); and polyphase inclusions dominated by silicate glass±fluid±sp±silicate±sulfide±carbonate (Type C). Type A inclusions commonly exhibit a “coating” (a few microns thick) consisting of an aggregate of a platy, hydrous Mg–Fe–Si phase, most likely talc, together with very small amounts of halite, dolomite and other phases. Larger crystals (e.g. (Na,K)Cl, dolomite, spinel, sulfide and phlogopite) may be found on either side of the “coating”, towards the wall of the host mineral or towards the inclusion center. These different fluids were formed through the immiscible separations and fluid–wall-rock reactions from a common, volatile-rich, siliceous, alkaline carbonatite melt infiltrating the upper mantle beneath the Tenerife. First, the original siliceous carbonatite melt is separated from a mixed CO2–H2O–NaCl fluid and a silicate/silicocarbonatite melt (preserved in Type A inclusions). The reaction of the carbonaceous silicate melt with the wall-rock minerals gave rise to large poikilitic orthopyroxene and clinopyroxene grains, and smaller neoblasts. During the metasomatic processes, the consumption of the silicate part of the melt produced carbonate-enriched Type B CO2–SO2 fluids which were trapped in exsolved orthopyroxene porphyroclasts. At the later stages, the interstitial silicate/silicocarbonatite fluids were trapped as Type C inclusions. At a temperature above 650 °C, the mixed CO2–H2O–NaCl fluid inside the Type A inclusions were separated into CO2-rich fluid and H2O–NaCl brine. At T<650 °C, the residual silicate melt reacted with the host olivine, forming a reaction rim or “coating” along the inclusion walls consisting of talc (or possibly serpentine) together with minute crystals of NaCl, KCl, carbonates and sulfides, leaving a residual CO2 fluid. The homogenization temperatures of +2 to +25 °C obtained from the Type A CO2 inclusions reflect the densities of the residual CO2 after its reactions with the olivine host, and are unrelated to the initial fluid density or the external pressure at the time of trapping. The latter are restricted by the estimated crystallization temperatures of 1000–1200 °C, and the spinel lherzolite phase assemblage of the xenolith, which is 0.7–1.7 GPa.  相似文献   

18.
We detect repeating earthquakes associated with the Philippine Sea plate subduction to reveal the plate configuration. In the Kanto district, we find 140 repeating earthquake groups with 428 events by waveform similarity analysis. Most repeating earthquakes in the eastern part of the Kanto district occur with a regular time interval. They have thrust-type focal mechanisms and are distributed near the upper surface of the Philippine Sea plate. These observations indicate that the repeating earthquakes there occur as a repetition of ruptures on the isolated patches distributed on the plate boundary owing to the concentration of stress caused by aseismic slips in the surrounding areas. This shows that the distributions of repeating earthquakes suggest the aseismic slips in the surrounding areas of small patches. We determine spatial distributions of repeating earthquakes in the eastern part of the Kanto district and find that they correspond to the upper boundary of the Philippine Sea plate, that is, the upper boundary of the oceanic crust layer of the Philippine Sea plate. The plate geometry around Choshi is newly constrained by repeating earthquake data and a rather flat geometry in the eastern part of the Kanto district is revealed. The obtained geometry suggests uplift of the Philippine Sea plate due to the collision with the Pacific plate beneath Choshi.Repeating earthquakes in the western part of the Kanto district have extremely shorter recurrence times, and their focal mechanisms are not of the thrust types. These repeating earthquakes are classified as “burst type” activity and likely to occur on the preexistent fault planes which are distributed around the “collision zone” between the Philippine Sea plate and the inland plate. The variation among the repeating earthquake activities in the Kanto district indicates that regular repetition of repeating earthquakes is possible only on the plate boundary with a smooth and simple geometry.  相似文献   

19.
In order to constrain interpretations of seismic reflection records more effectively, the seismic properties of a middle crustal section exposed in the Saint Barthélémy Massif have been determined. The massif, transected by a 200 m thick shear zone has been systematically sampled for density measurements and modal analysis has been performed in order to define the spatial variations of physical properties. Seismic velocities ( V p, V S, shear wave birefringence), have been measured on five representative samples to 600 MPa and 600°C simultaneously in the three structural directions (X, Y and Z). For two samples, the experimental data have been compared with calculated values, based on petrofabric analyses. The Lattice Preferred Orientation (LPO) is determined using universal stage, electron channelling microscopy and neutron diffraction goniometry. Using the experimental and calculated velocity data, we establish a lateral homogeneous anisotropic model.  相似文献   

20.
Compressional wave velocities have been measured in granite, granulite, amphibolite and peridotite specimens under conditions of high temperature up to 700°C and confining pressures up to 6 kbar. In general, velocity increases with pressure and decreases with temperature.Quartz-bearing rocks show an anomalous behavior of their compressional wave velocities. The velocity—temperature relations exhibit a velocity-“deep” due to the high—low inversion of the constituent quartz crystals. The intrinsic effect of temperature on velocities is hard to determine due to thermal expansion and consequent loosening of the structure. The opening of new cracks and the widening of old cracks causes a large decrease in compressional wave velocities. The minimum pressure to prevent damage at a given temperature should, therefore, be about 1 kbar/100°C.The values obtained at these conditions are considered to be most nearly correct as intrinsic properties of the compact aggregates. Velocity anisotropies at high confining pressures and high temperatures correlate with preferred lattice orientation of the constituent minerals. The effect of dimensional orientation and microcracks on seismic anisotropy seems to be of minor importance in dry rocks. It is the more eliminated the higher the confining pressure. The data do not support the concept of a velocity maximum in depth of 10–20 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号