首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study demonstrates the feasibility of using direct N2 measurements in an estuary for determination of denitrification. High precision measurements of dinitrogen: argon ratios (N2∶Ar) were made by membrane inlet mass spectrometry on water samples taken along the length of the Chesapeake Bay in July and October 2004. The N2∶Ar ratio in low salinity surface water was elevated relative to air saturation by 0.3–0.5% with no systematic change along the length of the Bay. N2∶Ar in high salinity bottom water exhibited a linear increase in the landward direction along a 144-km longitudinal section. In this section of the Bay covering 20% of the main stem, the bottom water salinity was statistically uniform and the increase in N2∶Ar was in the direction of net residual current flow. The system was analyzed as a capped river with the assumption that N2 entered the water from the underlying sediment where denitrification is known to take place. The rate of denitrification needed to support the measured increase in N2 was calculated using an average residual current velocity and water column depth. The increase in N2 with distance (0.046μmol N l−1 km−1) equated to an average denitrification flux of 73 μmol N m−2 h−1. N2 fluxes determined on sediment cores taken from the source and terminus regions of the delineated water mass were 45±23 and 83±39 μmol N m−2 hr−1, respectively, which were not statistically different from the whole system estimate. The measured change in oxygen concentration within the bottom water was used to estimate nitrogen remineralization and the efficiency of denitrification. Denitrification efficiency (nitrogen denitrified/nitrogen remineralized) was estimated to be in the range of 22–28% for the bottom water sediment system and 30–37% considering the sediment zone alone.  相似文献   

2.
Mangrove ecosystems play an important, but understudied, role in the cycling of carbon in tropical and subtropical coastal ocean environments. In the present study, we examined the diel dynamics of seawater carbon dioxide (CO2) and dissolved oxygen (DO) for a mangrove-dominated marine ecosystem (Mangrove Bay) and an adjacent intracoastal waterway (Ferry Reach) on the island of Bermuda. Spatial and temporal trends in seawater carbonate chemistry and associated variables were assessed from direct measurements of dissolved inorganic carbon, total alkalinity, dissolved oxygen (DO), temperature, and salinity. Diel pCO2 variability was interpolated across hourly wind speed measurements to determine variability in daily CO2 fluxes for the month of October 2007 in Bermuda. From these observations, we estimated rates of net sea to air CO2 exchange for these two coastal ecosystems at 59.8 ± 17.3 in Mangrove Bay and 5.5 ± 1.3 mmol m−2 d−1 in Ferry Reach. These results highlight the potential for large differences in carbonate system functioning and sea-air CO2 flux in adjacent coastal environments. In addition, observation of large diel variability in CO2 system parameters (e.g., mean pCO2: 390–2,841 μatm; mean pHT: 8.05–7.34) underscores the need for careful consideration of diel cycles in long-term sampling regimes and flux estimates.  相似文献   

3.
We investigated the hypothesis that effects of cultural eutrophication can be reversed through natural resource restoration via addition of an oyster module to a predictive eutrophication model. We explored the potential effects of native oyster restoration on dissolved oxygen (DO), chlorophyll, light attenuation, and submerged aquatic vegetation (SAV) in eutrophic Chesapeake Bay. A tenfold increase in existing oyster biomass is projected to reduce system-wide summer surface chlorophyll by approximately 1 mg m−3, increase summer-average deep-water DO by 0.25 g m−3, add 2100 kg C (20%) to summer SAV biomass, and remove 30,000 kg d−1 nitrogen through enhanced denitrification. The influence of osyter restoration on deep extensive pelagic waters is limited. Oyster restoration is recommended as a supplement to nutrient load reduction, not as a substitute.  相似文献   

4.
We report integrated measurements of sediment oxygen consumption (SOC) and bottom water plankton community respiration rates (WR) during eight cruises from 2003 to 2007 on the Louisiana continental shelf (LCS) where hypoxia develops annually. Averaged by cruise, SOC ranged from 3.9 to 25.8 mmol O2 m−2 day−1, whereas WR ranged from 4.1 to 10.8 mmol O2 m−3 day−1. Total below-pycnocline respiration rates ranged from 46.4 to 104.5 mmol O2 m−2 day−1. In general, below-pycnocline respiration showed low variability over a large geographic and temporal range, and exhibited no clear spatial or inter-annual patterns. SOC was strongly limited by dissolved oxygen (DO) in the overlying water; whereas, WR was insensitive to low DO, a relationship that may be useful for parameterizing future models. The component measures, WR and SOC, were similar to most prior measurements, both from the LCS and from other shallow estuarine and coastal environments. The contribution of SOC to total below-pycnocline respiration averaged 20 ± 4%, a finding that differs from several prior LCS studies, but one that was well supported from the broader estuarine and oceanic literature. The data reported here add substantially to those available for the LCS, thus helping to better understand oxygen dynamics on the LCS.  相似文献   

5.
The purpose of this field study was to determine the relationship between environmental conditions, particularly high nitrate (NO 3 ), low salinity events, and both nitrogen (N) storage (NO 3 , ammonium [NH 4 + ], free amino acids [FAA], protein, and total N) and nitrate reductase (NR) activity in the macroalgaeEnteromorpha lingulata andGelidium pusillum in the lower Mobile Bay estuary (Alabama, USA). The environmental conditions at the collection site varied over the growing season with the most notable changes due to late winter and spring runoff entering the estuary (1–30 psu, 0.3–25.8 μM NO 3 , 0.9–12.5 μM NH 4 + , 3–28°C, 61–2,375 μmol PAR m−2 s−1). Principal component analysis reduced the six environmental variables measured to three principal components. Stepwise, multiple regression analysis was then used to examine the relationship between the principal components and the internal NO 3 , NH 4 + , and FAA pools and NR activity. The results indicate that changes in inorganic N availability and salinity rather than changes in irradiance determine patterns of N storage and NO 3 reduction. BothE. lingulata andG. pusillum are capable of taking up and storing NO 3 when it becomes available. Greater NO 3 availability produced larger NH 4 + and FAA pools along with higher rates of NR activity inE. lingulata, but notG. pusillum, suggesting thatE. lingulata is able to metabolize NO 3 more rapidly during high NO 3 , low salinity events. Differences in the susceptibility ofE. lingulata andG. pusillum to NH 4 + inhibition and salinity stress combined with their different growth strategies help to explain the seasonal trends in total N. Total N inE. lingulata ranged from 2.57% to 6.39% dw, while the slower growingG. pusillum showed no significant variation in total N content (3.8–4.1% dw). These results led to the conclusion thatE. lingulata responds more quickly thanG. pusillum to high NO 3 , low salinity events and that these events have a larger effect on the overall N content ofE. lingulata.  相似文献   

6.
Benthic oxygen, dinitrogen, and nutrient fluxes (NH4+, NO3, and PO43−) were measured monthly during a 1-year period at two locations in Weeks Bay, a shallow (1.4 m) and eutrophic estuary in Alabama. Gross primary productivity (GPP), ecosystem respiration (R), and net ecosystem metabolism were determined from high-frequency dissolved oxygen measurements. Peak water column NO3 (55 μM) and chlorophyll a (138 μg/l) concentrations were measured during spring and fall, respectively. Sediments were a net source of NH4+ (102 μmol m−2 h−1) and PO43− (0.9 μmol m−2 h−1) but a sink for NO3 (−30 μmol m−2 h−1). Benthic N2 fluxes indicated net N fixation (12 μmol N m−2 h−1). Sediment oxygen demand (0.55 g O2 m−2 day−1) accounted for <10% of R (7.3 g O2 m−2 day−1). Despite high GPP rates (4.7 g O2 m−2 day−1), the estuary was net heterotrophic. Benthic regeneration supplied, on average, 7.5% and 4% of primary productivity N and P demands, respectively. These results contrast with the conventional view that benthic regeneration accounts for a large fraction of phytoplankton nutrient demand in shallow estuaries.  相似文献   

7.
Daily and annual integrated rates of primary productivity and community respiration were calculated using physiological parameters measured in oxygen-based photosynthesis-irradiance (P-I) incubations at 8 stations throughout central and western Long Island Sound (cwLIS) during the summer and autumn of 2002 and 2003 and the late spring of 2003. Each calculation takes into account actual variations in incident irradiance over the day and underwater irradiance and standing stock with depth. Annual peak rates, ±95% confidence interval of propagated uncertainty in each measurement, of gross primary production (GPP, 1,730±610 mmol O2 m−2 d−1), community respiration (Rc, 1,660±270 mmol O2 m−2 d−1), and net community production (NCP, 1,160±1,100 mmol O2 m−2 d−1) occurred during summer at the western end of the Sound. Lowest rates of GPP (4±11 mmol O2 m−2 d−1), Rc (−50±300 mmol O2 m−2 d−1), and NCP (−1,250±270 mmol O2 m−2 d−1) occurred during late autumn-early winter at the outer sampled stations. These large ranges in rates of GPP, Rc, and NCP throughout the photic zone of cwLIS are attributed to seasonal and spatial variability. Algal respiration (Ra) was estimated to consume an average of 5% to 52% of GPP, using a literature-based ratio of Ra:Rc. From this range, we established that the estimated Ra accounts for approximately half of GPP, and was used to estimate daily net primary production (NPP), which ranged from 2 to 870 mmol O2 m−2 d−1 throughout cwLIS during the study. Annual NPP averaged 40±8 mol O2 m−2 yr−1 for all sampled stations, which more than doubled along the main axis of the Sound, from 32±14 mol O2 m−2 yr−1 at an eastern station to 82±25 mol O2 m−2 yr−1 at the western-most station. These spatial gradients in productivity parallel nitrogen loads along the main axis of the Sound. Daily integrals of productivity were used to test and formulate a simple, robust biomass-light model for the prediction of phytoplankton production in Long Island Sound, and the slope of the relationship was consistent with reports for other systems.  相似文献   

8.
Deep Bay is a semienclosed bay that receives sewage from Shenzhen, a fast-growing city in China. NH4 is the main N component of the sewage (>50% of total N) in the inner bay, and a twofold increase in NH4 and PO4 concentrations is attributed to increased sewage loading over the 21-year period (1986–2006). During this time series, the maximum annual average NH4 and PO4 concentrations exceeded 500 and 39 μM, respectively. The inner bay (Stns DM1 and DM2) has a long residence time and very high nutrient loads and yet much lower phytoplankton biomass (chlorophyll (Chl) <10 μg L−1 except for Jan, July, and Aug) and few severe long-term hypoxic events (dissolved oxygen (DO) generally >2 mg L−1) than expected. Because it is shallow (~2 m), phytoplankton growth is likely limited by light due to mixing and suspended sediments, as well as by ammonium toxicity, and biomass accumulation is reduced by grazing, which may reduce the occurrence of hypoxia. Since nutrients were not limiting in the inner bay, the significant long-term increase in Chl a (0.52–0.57 μg L−1 year−1) was attributed to climatic effects in which the significant increase in rainfall (11 mm year−1) decreased salinity, increased stratification, and improved water stability. The outer bay (DM3 to DM5) has a high flushing rate (0.2 day−1), is deeper (3 to 5 m), and has summer stratification, yet there are few large algal blooms and hypoxic events since dilution by the Pearl River discharge in summer, and the invasion of coastal water in winter is likely greater than the phytoplankton growth rate. A significant long-term increase in NO3 (0.45–0.94 μM year−1) occurred in the outer bay, but no increasing trend was observed for SiO4 or PO4, and these long-term trends in NO3, PO4, and SiO4 in the outer bay agreed with those long-term trends in the Pearl River discharge. Dissolved inorganic nitrogen (DIN) has approximately doubled from 35–62 to 68–107 μM in the outer bay during the last two decades, and consequently DIN to PO4 molar ratios have also increased over twofold since there was no change in PO4. The rapid increase in salinity and DO and the decrease in nutrients and suspended solids from the inner to the outer bay suggest that the sewage effluent from the inner bay is rapidly diluted and appears to have a limited effect on the phytoplankton of the adjacent waters beyond Deep Bay. Therefore, physical processes play a key role in reducing the risk of algal blooms and hypoxic events in Deep Bay.  相似文献   

9.
Planktonic gross primary production (GPP), community respiration (CR), and nitrification (NIT) were measured monthly in the Scheldt estuary by the oxygen incubation method in 2003. No significant evolution of planktonic GPP was observed since the 1990s with high rates in the freshwater area (salinity 0; 97±65 mmol C m−2 d−1) decreasing seaward (22–37 mmol C m−2 d−1). A significant decrease of NIT was observed with regard to previous investigations although this process still represents up to 20% of total organic matter production in the inner estuary. Planktonic CR was highest in the inner estuary and seemed to be mainly controlled by external organic matter inputs. Planktonic net community production was negative most of the time in the estuary with values ranging from −300 to 165 mmol C m−2 d−1. Whole estuary net ecosystem production (NEP) was investigated on an annual scale using the results mentioned above and published benthic metabolic rates. A NEP of −39±8 mmol C m−2 d−1 was estimated, which confirms the strong heterotrophic status of this highly nutrified estuary. NEP rates were computed from June to December 2003 to compare with results derived from the Land-Ocean Interaction in the Coastal Zone budgeting procedure applied to dissolved inorganic phosphorus and carbon (DIP and DIC). DIP budgets failed to provide realistic estimates in the inner estuary where abiotic processes account for more than 50% of the nonconservative DIP flux. DIC budgets predicted a much lower NEP than in situ incubations (−109±31 versus −42±9 mmol C m−2 d−1) although, as each approach is associated with several critical assumptions, the source of this discrepancy remains unclear.  相似文献   

10.
Biogeochemical processes occurring near the sediment-water interface of shallow (≈20 m) water sediments lying beneath the Mississippi River plume on the Louisiana shelf were studied using benthic chambers and sediment cores. Three sites were chosen with distinctly different characteristics. One was overlain by oxic water where aerobic respiration dominated organic matter remineralization. The second site was overlain by oxic water but organic matter remineralization was dominated by sulfate reduction. The third site was overlain by hypoxic water and aerobic remineralization was of minor significance. Major differences were observed in the fluxes of CO2(17–56 mmol m−2 d−1), O2(2–56 mmol m−2 d−1) and nutrients (e.g., NH4 +, 2.6–4.2 mmol m−2 d−1) across the sediment-water interface, and the relative importance of different electron acceptors, even though the sites were in close proximity and at nearly the same water depth. Large variations in the efficiency of organic-C burial (3%–51%) were also calculated based on a simplified model of the relationships between the fraction of organic matter remineralized by sulfate reduction and the fraction of sulfide produced that is buried as pyrite. These observations demonstrate the high degree of spatial heterogeneity of benthic biogeochemistry in this important near-deltaic environment.  相似文献   

11.
Water quality and criculation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate densityThalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to −0.410 g CaCO3 m−2d−1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to −1.900 g CaCO3 m−2 night−1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average accumulation rate for Florida Bay of 8.7 cm 1000 yr−1 and suggests that sediment dissolution plays a more important role than sediment transport in loss of sediment from Florida Bay.  相似文献   

12.
The distribution and intensity of hypoxia (low dissolved oxygen) in estuaries is increasing worldwide due to cultural eutrophication. This study quantifies the strength of associations between the duration of diel-cycling severe hypoxia (≤2 mg O2 l−1) in bottom water (∼15 cm above bottom) of a shallow (<2 m) coastal lagoon estuary (Delaware, USA) and abiotic environmental variables (water temperature, insolation, tide, streamflow, and wind) and predicts the duration of severe hypoxia given different combinations of these variables. The intensity and spatial extent and dynamics of diel-cycling severe hypoxia events were defined. Vertical variability in dissolved oxygen (DO) concentration during the daytime was also determined. During the summers of 2001–2005, bottom DO data were collected for periods of weeks to months at multiple sites using automated sondes. Multiple linear regression (MLR) and regression tree analysis (RTA) were used to determine the relative importance of the environmental variables in predicting the number of hours of severe hypoxia per day. Key findings of the study were that severe hypoxia events of minutes to hours in duration occurred frequently in all four tributaries sampled, primarily between 0200 and 1000 hours. Severe hypoxia duration and diel-cycling amplitudes of DO concentration increased in the up-tributary direction. Hierarchically, the duration of severe hypoxia was influenced mostly by the mean daily water temperature, then by preceding days’ total insolation, percentage of morning hours (02:00 to 10:00 a.m.) ebb tide, and daily streamflow. Collectively, the variables examined by the MLR and the RTA approaches accounted for 62% and 65% of the variability in the duration of severe hypoxia, respectively. RTA demonstrated that daily mean water temperature above 26.3°C and previous day’s total insolation below 13.6 kW m−2 were associated with the longest lasting severe hypoxic events (9.56 h). The environmental variables and combinations of conditions that modulate or augment diel-cycling hypoxia presented in this paper enhance understanding of this widespread and growing phenomenon and provide additional insight regarding the extent to which it can impact food webs in very shallow estuarine waters that often serve as nursery habitat.  相似文献   

13.
Photosynthetically available radiation (PAR; 400–700 nm, E m−2 d−1) is the fraction of the total solar energy (Mjoules m−2 d−1) that is used by organisms for photosynthesis and vision. We present a statistical summary of a 17-yr time series of PAR data (1982–1998) collected near Chesapeake Bay as well as a second set of data on PAR and total solar energy gathered over a shorter time span (1997–1998). The time series data (5,126 daily totals) varied between 1–67 E m−2 d−1 and were used to estimate the minimum and maximum values of PAR as a function of day of the year. In monthly frequency distributions of the PAR data, three modes were observed corresponding to sunny, partly cloudy, and overcast days. The second set of PAR and total solar energy data were used to examine the ratio of PAR to total solar energy, which was 2.04 E Mjoule−1 for PAR between 10 and 70 E m−2 d−1. On overcast days, the ratio increased to as high as 3 E Mjoule−1 as PAR increased in importance as a fraction of the total solar energy. These values were consistent with others in the literature, and the relationships reported here can be used to predict the climatology of PAR and total solar energy within the Chesapeake region. The PAR data were also combined with reported minimum values of PAR for net primary production in the surface mixed layer of the water column of aquatic systems to estimate the combinations of mixed layer depth and diffuse attenuation coefficient (number of optical depths) under which light limitation of phytoplankton primary production is expected to occur.  相似文献   

14.
Sediment cores were sampled from Xiamen Western Bay at five sites during the summer and winter of 2006 and Hg–Au microelectrodes were used to make on board measurements of the concentration gradients of dissolved oxygen, Mn2+, and Fe2+ within the sediments. The O2 concentrations decreased sharply from about 200 μmol L−1 in the bottom seawater to zero within a depth of a few millimeters into the sediment. Dissolved Mn2+ was detected below the oxic zones with peak concentrations up to 600 μmol L−1, whereas dissolved Fe2+ had peak concentrations up to 1,000 μmol L−1 in deeper layers. The elemental contents of organic carbon and nitrogen within the sediments were analyzed and their C/N ratios were in the range of 9.0 to 10.1, indicative of heavy terrestrial origin. Sediments from two sites near municipal wastewater discharge outlets had higher organic contents than those from the other sites. These high organic contents corresponded to shallow O2 penetration depths, high dissolved Mn2+ and Fe2+ concentrations, and negative redox potentials within the sediments. This indicated that the high organic matter content had promoted microbial respiration within the sediments. Overall, the organic content did not show any appreciable decrease with increasing sediment depths, so a quadratic polynomial function was used to fit the curve of O2 profiles within the sediments. Based on the O2 profiles, O2 fluxes across the seawater and sediment interface were estimated to be in the range 6.07 to 14.9 mmol m−2 day−1, and organic carbon consumption rates within the surface sediments were estimated to be in the range 3.3 to 20.8 mgC cm−3 a−1. The case demonstrated that biogeochemistry within the sediments of the bay was very sensitive to human activities such as sewage discharge.  相似文献   

15.
The role of the microzooplankton community in regulating phytoplankton biomass was examined across a gradient from a river-dominated estuary to an oceanic-influenced coastal zone. Three stations located along a salinity gradient from the central region of Mobile Bay to 10 km off the coast were sampled from May 1994 to August 1995. Microzooplankton herbivory rates on phytoplankton and microzooplankton excretion of nitrogen derived from phytoplankton were estimated using the dilution technique. Microzooplankton grazing rates (range of station means=0.57–1.10 d−1) and phytoplankton growth rates (0.70–1.62 d−1) both increased across the salinity gradient from the bay station to the offshore station. However, the percent of primary production grazed per day was highest at the bay station (mean=83%) and decreased to a low at the offshore station (mean=64%). Excretion of phytoplankton-derived nitrogen by the microzooplankton was greatest at the bay and bay mouth stations. Excreted nitrogen could potentially supply 39%, 29%, and 20% of phytoplankton nitrogen demand at the bay, bay mouth, and offshore stations, respectively. These results support the idea that herbivorous microzooplankton are important in mediating nitrogen flow to both lower and higher trophic levels. *** DIRECT SUPPORT *** A01BY085 00012  相似文献   

16.
This study examined freshwater discharge of dissolved organic matter (DOM) to the shallow Lavaca–Matagorda (LM) Bay estuarine system along the central Texas coast and investigated whether chromophoric DOM (CDOM) photochemical reactions have the potential to stimulate microbial activity within LM estuarine waters. Dissolved organic carbon (DOC) concentrations ranged from 3 to 10 mg C l−1 and CDOM levels (reported as a 305) ranged from 8 to 77 m−1 during April and July, 2007, when the LM system was experiencing very high freshwater inputs. DOC and CDOM levels were well-correlated with salinities > 3, but exhibited considerable variability at salinities < 3. CDOM photobleaching rates (i.e., decrease in a 305 resulting from exposure to solar radiation) for estuarine samples ranged from 0.014 to 0.021 h−1, corresponding to photobleaching half-lives of 33–50 h. Our data indicate when Matagorda Bay waters photobleach; dissolved organic carbon utilization is enhanced perhaps due to enhanced microbial respiration of biologically labile photoproducts (BLPs). Net ecosystem metabolism calculations indicate that most of the LM system was net heterotrophic during our study. We estimate that BLP formation could support up to 20% of the daily microbial respiratory C demand in LM surface waters and combined with direct photochemical oxygen consumption could have an important influence on O2 cycles in the LM system.  相似文献   

17.
The present study describes variations in the vertical fluxes measured concurrently with sediment traps at both a shallow water (4 m) and a deeper water (7.5 m) position in a coastal lagoon in April 1995. A tripod equipped with five sediment traps (trap openings at 0.35 m, 0.75 m, 1.05 m, 1.40 m, and 1.80 m above the seabed) was placed at the shallow water position. This tripod was deployed three times during the study period and deployment periods varied between 2 d and 5 d. The second sediment trap, placed at the deep water position in the central part of the lagoon, measured vertical flux for intervals of 12 h at 1.4 m above the seabed. The horizontal distance between the sediment traps was 8 km. The average maximum vertical flux at the shallow water position reached 27.9 g m−2 d−1 during a period of high, westerly wind speeds, and a maximum vertical flux of 16.9 g m−2 d−1 was reached at the deep water position during a period of high, easterly wind speeds. Both strong resuspension events were closely related to increased wave shear stress derived from surface waves. Maximum wave-induced resuspension rate was 10 times higher at the shallow water position and 3.8 times higher at the deep water position compared with the net sedimentation rate in the lagoon. Small resuspension events occurred at the shallow water position during periods of increased current shear stress, Estimations of conditions for transport of sediment between shallow water and deep water showed that particles must be resuspended to a height between 3 m and 4 m and that current speeds must be higher than about 0.1 m s−1. An average sedimentation rate of 3.8 g m−2 d−1 was obtained at the shallow water position during a period without wave shear stress and low current shear stress. This rate measured by sediment traps is similar to a net sedimentation rate in the lagoon of 4.4 g m−2 d−1, which was determined by radiocarbon dating of a sediment core (Kristensen et al. 1995).  相似文献   

18.
Low dissolved oxygen events were characterized in Narragansett Bay (NB), a moderate-size (370 km2) temperate estuary with a complex passage/embayment geometry, using time series from 2001 to 2006 at nine fixed-site monitoring stations. Metrics for event intensity and severity were the event-mean deficit relative to a threshold (mg O2 l−1) and the deficit-duration (mg O2 l−1 day; product of deficit and duration [day]). Hypoxia (threshold 2.9 mg O2 l−1) typically occurred intermittently from late June through August at most stations, as multiple (two to five per season) events each 2 to 7 days long with deficit-duration 2 to 5 mg O2 l−1 day. Conditions were more severe to the north and west, a pattern attributed to a north–south nutrient/productivity gradient and east–west structure of residual circulation. Spatial patterns for suboxic and severely hypoxic events (thresholds 4.8 and 1.4 mg O2 l−1) were similar. The view that different processes govern event variability in different regions, each influenced by local hydrodynamics, is supported by both weak spatial synchronicity (quantified using overlap of event times at different sites) and multiple linear regressions of biological and physical parameters against event severity. Interannual changes were prominent and season-cumulative hypoxia severity correlated with June-mean river runoff and June-mean stratification. Benthic ecological implications for areas experiencing events include: NB hypoxia classifies as periodic/episodic on a near-annual basis; highest direct mortality risk is to sensitive and moderately sensitive sessile species in the northern West Passage and western Greenwich Bay, with some risk to Upper Bay; direct risk to mobile species may be ameliorated by weak spatial synchronicity; and indirect impacts, including reduced growth rates and shifts in predator–prey balances, are very likely throughout the sampled area due to observed suboxic and hypoxic conditions.  相似文献   

19.
The redox stratification of bottom sediments in Kandalaksha Bay, White Sea, is characterized by elevated concentrations of Mn (3–5%) and Fe (7.5%) in the uppermost layer, which is two orders of magnitude and one and a half times, respectively, higher than the average concentrations of these elements in the Earth’s crust. The high concentrations of organic matter (Corg = 1–2%) in these sediments cannot maintain (because of its low reaction activity) the sulfate-reducing process (the concentration of sulfide Fe is no higher than 0.6%). The clearest manifestation of diagenesis is the extremely high Mn2+ concentration in the silt water (>500 μM), which causes its flux into the bottom water, oxidation in contact with oxygen, and the synthesis of MnO2 oxyhydroxide enriching the surface layer of the sediments. Such migrations are much less typical of Fe. Upon oxygen exhaustion in the uppermost layer of the sediments, the synthesized oxyhydroxides (MnO2 and FeOOH) serve as oxidizers of organic matter during anaerobic diagenesis. The calculated diffusion-driven Mn flux from the sediments (280 μmM/m2 day) and corresponding amount of forming Mn oxyhydrate as compared to opposite oxygen flux to sediments (1–10 mM/m2 day) indicates that >10% organic matter in the surface layer of the sediments can be oxidized with the participation of MnO2. The roles of other oxidizers of organic matter (FeOOH and SO42−) becomes discernible at deeper levels of the sediments. The detailed calculation of the balance of reducing processes testifies to the higher consumption of organic matter during the diagenesis of surface sediments than it follows from the direct determination of Corg. The most active diagenetic redox processes terminate at depths of 25–50 cm. Layers enriched in Mn at deeper levels are metastable relicts of its surface accumulation and are prone to gradual dissemination  相似文献   

20.
Respiration and calcification rates of the Pacific oyster Crassostrea gigas were measured in a laboratory experiment in the air and underwater, accounting for seasonal variations and individual size, to estimate the effects of this exotic species on annual carbon budgets in the Bay of Brest, France. Respiration and calcification rates changed significantly with season and size. Mean underwater respiration rates, deducted from changes in dissolved inorganic carbon (DIC), were 11.4 μmol DIC g−1 ash-free dry weight (AFDW) h−1 (standard deviation (SD), 4.6) and 32.3 μmol DIC g−1 AFDW h−1 (SD 4.1) for adults (80–110 mm shell length) and juveniles (30–60 mm), respectively. The mean daily contribution of C. gigas underwater respiration (with 14 h per day of immersion on average) to DIC averaged over the Bay of Brest population was 7.0 mmol DIC m−2 day−1 (SD 8.1). Mean aerial CO2 respiration rate, estimated using an infrared gas analyzer, was 0.7 μmol CO2 g−1 AFDW h−1 (SD 0.1) for adults and 1.1 μmol CO2 g−1 AFDW h−1 (SD 0.2) for juveniles, corresponding to a mean daily contribution of 0.4 mmol CO2 m−2 day−1 (SD 0.50) averaged over the Bay of Brest population (with 10 h per day of emersion on average). Mean CaCO3 uptake rates for adults and juveniles were 4.5 μmol CaCO3 g−1 AFDW h−1 (SD 1.7) and 46.9 μmol CaCO3 g−1 AFDW h−1 (SD 29.2), respectively. The mean daily contribution of net calcification in the Bay of Brest C. gigas population to CO2 fluxes during immersion was estimated to be 2.5 mmol CO2 m−2 day−1 (SD 2.9). Total carbon release by this C. gigas population was 39 g C m−2 year−1 and reached 334 g C m−2 year−1 for densely colonized areas with relative contributions by underwater respiration, net calcification, and aerial respiration of 71%, 25%, and 4%, respectively. These observations emphasize the substantial influence of this invasive species on the carbon cycle, including biogenic carbonate production, in coastal ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号