首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Failed magmatic eruptions: late-stage cessation of magma ascent   总被引:4,自引:2,他引:2  
When a volcano becomes restless, a primary question is whether the unrest will lead to an eruption. Here we recognize four possible outcomes of a magmatic intrusion: “deep intrusion”, “shallow intrusion”, “sluggish/viscous magmatic eruption”, and “rapid, often explosive magmatic eruption”. We define “failed eruptions” as instances in which magma reaches but does not pass the “shallow intrusion” stage, i.e., when magma gets close to, but does not reach, the surface. Competing factors act to promote or hinder the eventual eruption of a magma intrusion. Fresh intrusion from depth, high magma gas content, rapid ascent rates that leave little time for enroute degassing, opening of pathways, and sudden decompression near the surface all act to promote eruption, whereas decreased magma supply from depth, slow ascent, significant enroute degassing and associated increases in viscosity, and impingement on structural barriers all act to hinder eruption. All of these factors interact in complex ways with variable results, but often cause magma to stall at some depth before reaching the surface. Although certain precursory phenomena, such as rapidly escalating seismic swarms or rates of degassing or deformation, are good indicators that an eruption is likely, such phenomena have also been observed in association with intrusions that have ultimately failed to erupt. A perpetual difficulty with quantifying the probability of eruption is a lack of data, particularly on instances of failed eruptions. This difficulty is being addressed in part through the WOVOdat database. Papers in this volume will be an additional resource for scientists grappling with the issue of whether or not an episode of unrest will lead to a magmatic eruption.  相似文献   

2.
The stress field in the vicinity of a body of fluid of simple geometry contained within a non-homogeneously stressed solid has been calculated and the result applied to the case of a magma body within a region of the crust subject to triaxial stresses. The types of faulting and minor intrusion which result are described. The theory indicates that the regional stresses in the crust together with the magma pressure control the type of faulting, the form of the minor intrusions and the occurrence of eruptions from the magma body. The stress conditions favouring caldera formation, the intrusion of radial dykes, dyke swarms and cone sheets are described.  相似文献   

3.
To investigate the physical controls on volcano-tectonic (VT) precursors to eruptions and intrusions at basaltic volcanoes, we have analyzed the spatial and temporal patterns of VT earthquakes associated with 34 eruptions and 23 dyke intrusions that occurred between 1960 and 1983 at Kilauea, in Hawaii. Eighteen of the 57 magmatic events were preceded by an acceleration of the mean rate of VT earthquakes located close to the main shallow magma reservoir. Using a maximum-likelihood technique and the Bayesian Information Criterion for model preference, we demonstrate that an exponential acceleration is preferred over a power-law acceleration for all sequences. These sequences evolve over time-scales of weeks to months and are consistent with theoretical models for the approach to volcanic eruptions based on the growth of a population of fractures in response to an excess magma pressure. Among the remaining 40 magmatic events, we found a significant correlation between swarms of VT earthquakes located in the mobile south-flank of Kilauea and eruptions and intrusions. The behaviour of these swarms suggests that at least some of the magmatic events are triggered by transient episodes of elevated rates of aseismic flank movement, which could explain why many eruptions and intrusions are not preceded by longer-term precursory signals. In none of the 57 cases could a precursory sequence be used to distinguish between the approach to an eruption or an intrusion, so that, even when a precursory sequence is recognized, there remains an empirical chance of about 40% (24 intrusions from 57 magmatic events) of issuing a false alarm for an imminent eruption.  相似文献   

4.
Earthquake swarms are often assumed to be caused by magmatic or fluid intrusions, where the stress changes in the vicinity of the intrusion control the position, strength and rate of seismicity. Fracture mechanical models of natural intrusions or man-made hydrofractures pose constraints on orientation, magnitude, shape and growing rate of fractures and can be used to estimate stress changes in the vicinity of the intrusions. Although the idea of intrusion-induced seismicity is widely accepted, specific comparisons of seismicity patterns with fracture models of stress changes are rarely done. The goal of the study is to review patterns of intrusion-induced earthquake swarms in comparison to the observations of the swarm in NW Bohemia in 2000. We analyse and discuss the theoretical 3D shape of intrusions under mixed mode loading and apparent buoyancy. The aspect ratio and form of the intrusion is used to constrain parameters of the fluid, the surrounding rock and stress. We conclude that the 2000 NW Bohemia swarm could have been driven by a magmatic intrusion. The intrusion was, however, inclined to the maximal principal stress and caused shear displacement additional to opening. We estimate that the density diference between magma and rock was small. The feeding reservoir was possibly much larger than the area affected from earthquakes and may be a vertical dike beneath the swarm region.  相似文献   

5.
磁异常揭示的峨眉山大火成岩省的深部结构   总被引:1,自引:0,他引:1       下载免费PDF全文
峨眉山大火成岩省位于中国西南部,在晚二叠纪约260 Ma喷发出巨量的大陆溢流型玄武岩.对于大火成岩省的岩浆喷发,在地下必定有一个相应的大规模岩浆聚集和运移系统.地球物理方法是探测岩石圈内部的有效方式.峨眉山大火成岩省为镁铁质岩浆喷发,由于镁铁质-超镁铁质岩石一般具有强磁性,因此,在喷发结束之后,地下岩浆系统如果被镁铁质岩浆填充,冷却固化成为岩石圈的一部分,很有可能会引起磁异常.本文使用区域磁异常数据来对峨眉山大火成岩省的深部构造进行研究.该区域的磁异常由一系列离散的异常组成,通过3D磁化率反演可以得到磁性体的空间分布.由于磁异常中具有明显的剩磁,直接使用经典的反演方法会有较大误差,我们首先将磁异常转换为弱敏感于磁化方向的磁异常模量,再使用模量数据进行3D反演,得到地下空间内磁异常源的分布.经过分析认为这些离散分布的磁异常源反映了岩石圈内部的镁铁质-超镁铁质侵入体.侵入体的位置可能反映了底侵和内侵的镁铁质岩浆固化形成的侵入体,代表镁铁质岩浆房位置或者岩浆运移的主要通道.  相似文献   

6.
Saucer-shaped dolerite and sandstone intrusions are common in sedimentary basins world-wide. We have conducted a series of scaled experiments simulating the process of magma emplacement in sedimentary basins, with particular attention on the formation of saucer-shaped sills. The model materials were (1) cohesive fine-grained silica flour, representing brittle crust; and (2) molten low-viscosity oil, representing magma. The experiments were performed in both homogeneous and layered models. In all the experiments, oil injection resulted in doming of the surface. In the homogeneous models, the injected oil formed cone sheets and sub-vertical dykes. Cone sheets formed for shallow injection (1–3 cm), and vertical dykes formed for deeper injection (4–5 cm). In layered models, the injected oil always formed saucer-shaped intrusions. Our experimental results show that (1) sill intrusion results in the formation of a dome, with melt erupting at the rim; (2) layering controls the formation of sills and saucer-shaped sills; (3) saucer-shaped sills are fed from the bottom and the fluid flows upward and outward; and (4) the diameter of saucer-shaped sills increase with increasing emplacement depth. The systematic relation between domes and sills and the depth-dependence of sill diameters show that saucer-shaped intrusions result from the interaction between a growing flat-lying shallow sill and doming of the free surface. We conclude that saucer-shaped intrusions represent fundamental geometries formed by shallow magma intrusion in stratified basins.  相似文献   

7.
Coloumbo submarine volcano lies 6.5 km offshore the NE part of the Santorini island complex and exhibits high seismicity along with vigorous hydrothermal activity. This study models the local stress field around Coloumbo's magma chamber and investigates its influence on intrusion emplacement and geometry. The two components of the stress field, hoop and radial stress, are calculated using analytical formulas that take into account the depth and radius of the magma chamber as these are determined from seismological and other observations. These calculations indicate that hoop stress at the chamber walls is maximum at an angle of 74° thus favouring flank intrusions, while the radial stress switches from tensile to compressive at a critical distance of 5.7 km from the center of the magma chamber. Such estimates agree well with neotectonic and seismological observations that describe the local/regional stress field in the area. We analyse in detail the case where a flank intrusion reaches the surface very near the NE coast of Thera as this is the worst-case eruption scenario. The geometrical features of such a feeder dyke point to an average volumetric flow rate of 9.93 m3 s−1 which corresponds to a Volcanic Explosivity Index of 3 if a future eruption lasts about 70 days. Hazards associated with such an eruption include ashfall, ballistic ejecta and base surges due to explosive mixing of magma with seawater. Previous studies have shown that areas near erupting vents are also foci of moderate to large earthquakes that precede or accompany an eruption. Our calculations show that a shallow event (3–5 km) of moment magnitude 5.9 near the eruptive vent may cause Peak Ground Acceleration in the range 122–177 cm s−2 at different locations around Santorini. These values indicate that seismic hazard even due to a moderate earthquake near Coloumbo, is not trivial and may have a significant impact especially on older buildings at Thera island.  相似文献   

8.
Incipient magma chamber formation as a result of repetitive intrusions   总被引:1,自引:0,他引:1  
An analytical solution for periodic magma intrusions in conduits was developed to study the onset of shallow magma chamber formation. The solution is based on determining when a repetitive series of intrusions can cause the wall rock of a conduit to reach its melt temperature. The results show that magma chamber formation in conduits is a strong function of the volume rate of intrusion and that magma chamber formation is likely when the intrusion rate exceeds 10?3 km3/ yr. which agrees with observations by other investigators. Once this critical value of intrusion rate is reached, magma chambers are likely to begin forming after only a few intrusive pulses (less than ten). Results for both cylindrical conduits and dikes show cylindrical conduits are more favourable for the formation of shallow magma chambers.  相似文献   

9.
It is likely that the structure of a volcanic edifice can be significantly modified by deformation caused by large, shallow intrusions. Such deformation may interact with that caused by volcano loading. We explore such intrusion-related and loading-related deformation with field evidence and analogue models. To do this we have chosen the eroded Palaeogene Mull volcano (Scotland) that had a major edifice, has well exposed intrusions and significant deformation. There are thin Mesozoic sedimentary rocks forming ductile layers below the volcano, but their thickness is insufficient to allow the gravitational spreading of the volcanic edifice, especially when considering that a thick lava pile covers them. Thus intrusive push may have been the driving force for deformation. The Mull activity migrated toward the northwest, forming three successive intrusive complexes (Centres 1, 2 and 3). Our detailed fieldwork reveals that deformation due to these was accommodated on three levels; along thrust planes in lava sequences, along a décollement located in a thin clay-rich sediment succession and in basement schists. A relative chronology has been established between different groups of structures using dyke and sill cross-cutting relationships. Centre 1 is surrounded by a fold and thrust belt leading to radial expansion. In contrast, Centre 2 and 3 are connected to thrusts located to the south and east, bounded by strike-slip faults, leading to expansion to the southeast. The migration of centres and the directed sliding of the edifice may be related to the presence to the southeast of low-resistance Dalradian basement that failed significantly during growth of Centres 2 and 3. To study the observed relationships we have carried out scaled analogue models. Models are made with fine powder intruded by a viscous magma analogue. The models show an intimate relationship between intrusion growth, uplift of the volcano and subsequent flank sliding. The structures produced can be compared with Mull and suggest that the Centre 1 thrust belt probably formed following edifice gravitational sliding as a consequence of the uplift associated with Centre 1 formation. Centre 2 and 3 are responsible for the sector sliding of the edifice flank toward the southeast as the magmatic complex became more asymmetric. The features observed at Mull and in the models are similar to those seen on active volcanoes, such as Etna, providing a structural framework for their deformation and evolution.  相似文献   

10.
近年来,针对秦岭造山带晚三叠世花岗岩体侵位机制的巨大争议,一些研究采用磁组构方法分析了岩体的内部组构特征及其与区域构造的关系,提出了具有重要意义的新认识.然而,目前这些研究均缺乏对岩体磁组构本质意义的分析,利用该方法约束岩体内部组构的可靠性并不十分清晰.针对这一问题,本文以秦岭造山带内具典型代表性意义的晚三叠世糜署岭花岗岩体为例,开展了该岩体的磁组构、岩石磁学、矿物形态组构和显微构造的综合研究.结果表明,糜署岭岩体的磁化率总体较低,属钛铁矿系列花岗岩.绝大部分样品的磁化率受控于顺磁性的黑云母等铁镁硅酸盐矿物,部分高磁化率样品包含了少量多畴磁铁矿等铁磁性组分的贡献,且随磁化率增大,铁磁性组分的贡献更为明显.样品的磁组构也主要是黑云母组构或由黑云母与磁铁矿的亚组构复合而成.由于样品中磁铁矿含量较低且与黑云母密切共生,磁组构与黑云母形态组构基本一致,因此,黑云母与磁铁矿的亚组构基本共轴.糜署岭岩体的磁组构本质上等同于黑云母组构,反映了黑云母等页硅酸盐矿物在岩体中的分布,可以有效的指示岩体的内部构造特征.宏观和显微构造观察还显示,糜署岭岩体的内部组构形成于岩浆侵位的晚期阶段,叠加了同岩浆期区域构造的关键信息,是从岩体构造角度开展区域构造演化的良好载体.  相似文献   

11.
腾冲地区地壳速度结构的有限差分成像   总被引:1,自引:1,他引:0       下载免费PDF全文
利用流动台网和固定台站的地震观测数据,采用有限差分层析成像方法反演了腾冲及邻近地区的地壳P波速度结构,分析了腾冲火山区的岩浆活动和龙陵七级地震的深部构造成因.研究结果表明,腾冲火山区的地壳结构具有明显的非均匀性,浅表层偏低的速度主要为盆地内部的松散沉积层、新生代火山堆积及断裂附近的流体裂隙和热泉活动所致;5~15 km之间的高速体可能代表了早期火山通道内冷却固结的岩浆侵入体或难挥发的超铁镁质残留体;地壳深部的低速体则反映了熔融或半熔融的岩浆体,推断火山区下方的岩浆活动与龙陵七级地震震源区地壳深部的岩浆侵入来自同一源区--现今壳内岩浆活动的主要区域.龙陵震源区的地壳速度结构横向变化较大,怒江断裂东侧和龙陵断裂西侧为高速特征,介质应变强度较大,为应力积累的主要载体;两断裂之间的低速区向下延伸至下地壳,可能与地壳深部的岩浆侵入有关;龙陵断裂和怒江断裂明显控制了这一区域的岩浆活动,七级地震正是发生在断裂下方的速度边界附近.地壳介质强度的横向变化导致了震源区应力积累的不均一性,深部岩浆的聚集和动力作用是龙陵地区发生强震的主要原因.  相似文献   

12.
Volcanic eruptions can produce large magnetic field changes by thermomagnetic effects, especially when magma cools from high temperatures and acquires a permanent magnetisation from the Earth's magnetic field. After the 2000 eruption of Mt Usu, Japan, significant magnetic field changes were observed not only in the vicinity of the magmatic intrusion but also in an area some distance away that was unlikely to be at a temperature near the Curie Point.  相似文献   

13.
The May 2005 eruption of Fernandina volcano, Galápagos, occurred along circumferential fissures parallel to the caldera rim and fed lava flows down the steep southwestern slope of the volcano for several weeks. This was the first circumferential dike intrusion ever observed by both InSAR and GPS measurements and thus provides an opportunity to determine the subsurface geometry of these enigmatic structures that are common on Galápagos volcanoes but are rare elsewhere. Pre- and post- eruption ground deformation between 2002 and 2006 can be modeled by the inflation of two separate magma reservoirs beneath the caldera: a shallow sill at ~1 km depth and a deeper point-source at ~5 km depth, and we infer that this system also existed at the time of the 2005 eruption. The co-eruption deformation is dominated by uplift near the 2005 eruptive fissures, superimposed on a broad subsidence centered on the caldera. Modeling of the co-eruption deformation was performed by including various combinations of planar dislocations to simulate the 2005 circumferential dike intrusion. We found that a single planar dike could not match both the InSAR and GPS data. Our best-fit model includes three planar dikes connected along hinge lines to simulate a curved concave shell that is steeply dipping (~45–60°) toward the caldera at the surface and more gently dipping (~12–14°) at depth where it connects to the horizontal sub-caldera sill. The shallow sill is underlain by the deep point source. The geometry of this modeled magmatic system is consistent with the petrology of Fernandina lavas, which suggest that circumferential eruptions tap the shallowest parts of the system, whereas radial eruptions are fed from deeper levels. The recent history of eruptions at Fernandina is also consistent with the idea that circumferential and radial intrusions are sometimes in a stress-feedback relationship and alternate in time with one another.  相似文献   

14.
A significant number of volcano-tectonic (VT) earthquake swarms, some of which are accompanied by ground deformation and/or volcanic gas emissions, do not culminate in an eruption. These swarms are often thought to represent stalled intrusions of magma into the mid- or shallow-level crust. Real-time assessment of the likelihood that a VT swarm will culminate in an eruption is one of the key challenges of volcano monitoring, and retrospective analysis of non-eruptive swarms provides an important framework for future assessments. Here we explore models for a non-eruptive VT earthquake swarm located beneath Iliamna Volcano, Alaska, in May 1996–June 1997 through calculation and inversion of fault-plane solutions for swarm and background periods, and through Coulomb stress modeling of faulting types and hypocenter locations observed during the swarm. Through a comparison of models of deep and shallow intrusions to swarm observations, we aim to test the hypothesis that the 1996–97 swarm represented a shallow intrusion, or “failed” eruption. Observations of the 1996–97 swarm are found to be consistent with several scenarios including both shallow and deep intrusion, most likely involving a relatively small volume of intruded magma and/or a low degree of magma pressurization corresponding to a relatively low likelihood of eruption.  相似文献   

15.
In this paper, we document the evolution of the emergent Panarea dome in the Aeolian islands (Southern Italy), placing particular emphasis on the reconstruction of the explosive events that occurred during the final stage of its evolution. Two main pyroclastic successions exposing fall deposits with different compositions have been studied into detail: the andesitic Palisi succession and the basaltic Punta Falcone succession. The close-in-time deposition of the two successions, the dispersal area and grain-size distribution of the deposits account for their attribution to vents located in the western sector of the present island and erupting almost contemporaneously. Vents could have been aligned along NNE-trending regional fracture systems controlling the western flank of the dome and possibly its collapse. Laboratory analyses have been devoted to the characterization of the products of the two successions that have been ascribed to vulcanian- and to strombolian-type eruptions respectively. The vulcanian eruption started with a vent-clearing phase that occurred by sudden decompression of a pressurized magma producing ballistic bombs and a surge blast and the development of a vulcanian plume. Vulcanian activity was almost contemporaneous to strombolian-type fall-out eruptions. The coeval occurrence of basaltic and andesitic eruptions from close vents and the presence of magmatic basaltic enclaves in the final dacitic lava lobe of the dome allow us to speculate that the intrusion of a basaltic dyke played a major role in triggering explosive eruptions. The final explosive episodes may have been caused by extensional tectonics fracturing the roof of a zoned shallow magma chamber or by the intrusion of a new basaltic magma into a more acidic and shallow reservoir. Intrusion most likely occurred through the injection of dykes along the western cliff of the present Panarea Island inducing the collapse of the western sector of the dome.  相似文献   

16.
Intrusions of ultramafic bodies into the lower density continental crust are documented for a large variety of tectonic settings spanning continental shields, rift systems, collision orogens and magmatic arcs. The intriguing point is that these intrusive bodies have a density higher by 300-500 kg m−3 than host rocks. Resolving this paradox requires an understanding of the emplacement mechanism. We have employed finite differences and marker-in-cell techniques to carry out a 2D modeling study of intrusion of partly crystallized ultramafic magma from sublithospheric depth to the crust through a pre-existing magmatic channel. By systematically varying the model parameters we document variations in intrusion dynamics and geometry that range from funnel- and finger-shaped bodies (pipes, dikes) to deep seated balloon-shaped intrusions and flattened shallow magmatic sills. Emplacement of ultramafic bodies in the crust lasts from a few kyr to several hundreds kyr depending mainly on the viscosity of the intruding, partly crystallized magma. The positive buoyancy of the sublithospheric magma compared to the overriding, colder mantle lithosphere drives intrusion while the crustal rheology controls the final location and the shape of the ultramafic body. Relatively cold elasto-plastic crust (TMoho = 400 °C) promotes a strong upward propagation of magma due to the significant decrease of plastic strength of the crust with decreasing confining pressure. Emplacement in this case is controlled by crustal faulting and subsequent block displacements. Warmer crust (TMoho = 600 °C) triggers lateral spreading of magma above the Moho, with emplacement being accommodated by coeval viscous deformation of the lower crust and fault tectonics in the upper crust. Strong effects of magma emplacement on surface topography are also documented. Emplacement of high-density, ultramafic magma into low-density rocks is a stable mechanism for a wide range of model parameters that match geological settings in which partially molten mafic-ultramafic rocks are generated below the lithosphere. We expect this process to be particularly active beneath subduction-related magmatic arcs where huge volumes of partially molten rocks produced from hydrous cold plume activity accumulate below the overriding lithosphere.  相似文献   

17.
Dikes within stratovolcanoes are commonly expected to have radial patterns. However, other patterns may also be found, due to regional stresses, magmatic reservoirs and topographic variations. Here, we investigate dike patterns within volcanic edifices by studying dike and fissure complexes at Somma-Vesuvius and Etna (Italy) using analogue models. At the surface, the dikes and fissures show a radial configuration. At depths of tens to several hundreds of metres, in areas exposed by erosion, tangential and oblique dikes are also present. Analogue models indicate that dikes approaching the flanks of cones, regardless of their initial orientation, reorient to become radial (parallel to the maximum gravitational stress). This re-orientation is a significant process in shallow magma migration and may also control the emplacement of dike-fed fissures reaching the lower slopes of the volcano.  相似文献   

18.
Many basaltic volcanoes emit a substantial amount of gas over long periods of time while erupting relatively little degassed lava, implying that gas segregation must have occurred in the magmatic system. The geometry and degree of connectivity of the plumbing system of a volcano control the movement of magma in that system and could therefore provide an important control on gas segregation in basaltic magmas. We investigate gas segregation by means of analogue experiments and analytical modelling in a simple geometry consisting of a vertical conduit connected to a horizontal intrusion. In the experiments, degassing is simulated by electrolysis, producing micrometric bubbles in viscous mixtures of water and golden syrup. The presence of exsolved bubbles induces a buoyancy-driven exchange flow between the conduit and the intrusion that leads to gas segregation. Bubbles segregate from the fluid by rising and accumulating as foam at the top of the intrusion, coupled with the accumulation of denser degassed fluid at the base of the intrusion. Steady-state influx of bubbly fluid from the conduit into the intrusion is balanced by outward flux of lighter foam and denser degassed fluid. The length and time scales of this gas segregation are controlled by the rise of bubbles in the horizontal intrusion. Comparison of the gas segregation time scale with that of the cooling and solidification of the intrusion suggests that gas segregation is more efficient in sills (intrusions in a horizontal plane with typical width:length aspect ratio 1:100) than in horizontally-propagating dykes (intrusions in a vertical plane with typical aspect ratio 1:1000), and that this process could be efficient in intermediate as well as basaltic magmas. Our investigation shows that non-vertical elements of the plumbing systems act as strong gas segregators. Gas segregation has also implications for the generation of gas-rich and gas-poor magmas at persistently active basaltic volcanoes. For low magma supply rates, very efficient gas segregation is expected, which induces episodic degassing activity that erupts relatively gas-poor magmas. For higher magma supply rates, gas segregation is expected to be less effective, which leads to stronger explosions that erupt gas-rich as well as gas-poor magmas. These general physical principles can be applied to Stromboli volcano and are shown to be consistent with independent field data. Gas segregation at Stromboli is thought likely to occur in a shallow reservoir of sill-like geometry at 3.5 km depth with exsolved gas bubbles 0.1–1 mm in diameter. Transition between eruptions of gas-poor, high crystallinity magmas and violent explosions that erupt gas-rich, low crystallinity magmas are calculated to occur at a critical magma supply rate of 0.1–1 m3 s− 1.  相似文献   

19.
An eruption on the eastern flank of Piton de la Fournaise volcano started on 16 November, 2002 after 10 months of quiescence. After a relatively constant level of activity during the first 13 days of the eruption, lava discharge, volcanic tremor and seismicity increased from 29 November to 3 December. Lava effusion suddenly ceased on 3 December while shallow earthquakes beneath the Dolomieu summit crater were still recorded at a rate of about one per minute. This unusual activity continued and increased in intensity over the next three weeks, ending with the formation of a pit crater within Dolomieu. Based on ground deformation, measured by rapid-static and continuous GPS and an extensometer, seismic data, and lava effusion patterns, the eruptive period is divided into five stages: 1) slow summit inflation and sporadic seismicity; 2) rapid summit inflation and a short seismic crisis; 3) rapid flank inflation, onset of summit deflation, sporadic seismicity, accompanied by stable effusion; 4) flank inflation, coupled with summit deflation, intense seismicity, and increased lava effusion; and finally 5) little deflation, intense shallow seismicity, and the end of lava effusion. We propose a model in which the pre-intrusive inflation of Stage 1 in the months preceding the eruption was caused by a magma body located near sea level. The magma reservoir was the source of an intrusion rising under the summit during Stage 2. In Stage 3, the magma ponded at a shallow level in the edifice while the lateral injection of a radial dike reached the surface on the eastern flank of the basaltic volcano, causing lava effusion. Pressure decrease in the magmatic plumbing system followed, resulting in upward migration of a collapse front, forming a subterranean column of debris by faulting and stoping. This caused intense shallow seismicity, increase in discharge of lava and volcanic tremor at the lateral vent in Stage 4 and, eventually the formation of a pit crater in Stage 5.  相似文献   

20.
岩浆岩的模拟实验,由于其实验条件的可控性,能够较好地研究岩浆岩的影响因素及其机理.本文实验表明,岩浆岩的磁组构除与成岩时的流动有关外,还受地磁场及重力场的影响,当流动较强时,岩浆岩的磁线理与流动方向有很好的一致性;当流动较弱时,地磁场方向的影响更大.另外,由于岩浆岩较弱的磁各向异性,以及成岩后期各种因素的影响,使其机理呈现复杂性,主轴方位具有分散性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号