首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
标准化降水蒸发指数在中国区域的应用   总被引:14,自引:0,他引:14  
利用中国气象局160个站1951~2010年月降水和月平均气温资料,分析了最近定义的一种干旱指数——标准化降水蒸发指数(SPEI)在我国不同等级降水区域的适用性,并与标准化降水指数(SPI)和湿润指数H进行了对比分析。结果表明:1)在我国年均降水量大于200 mm的地区,各种时间尺度的SPEI分析均适用;在干旱区(年均降水量小于200 mm),只有12个月以上的大尺度SPEI分析适用性较好;其中12个月尺度的SPEI分析在各区适用性最好。2)由于干旱区冬季的潜在蒸发量和降水量0值均较多,导致1、3、6个月的小尺度SPEI分析在该区不适用。3)与SPI和H指数相比,SPEI既能充分反映1997年气温跃变以后增温效应对干旱程度的影响,又可作为监测指数识别干旱是否发生和结束,能较准确地表征干旱状况。  相似文献   

2.
Climate change is likely to lead more frequent droughts in the Pacific Northwest (PNW) of America. Rising air temperature will reduce winter snowfall and increase earlier snowmelt, subsequently reducing summer flows. Longer crop-growing season caused by higher temperatures will lead to increases in evapotranspiration and irrigation water demand, which could exacerbate drought damage. However, the impacts of climate change on drought risk will vary over space and time. Thus, spatially explicit drought assessment can help water resource managers and planners to better cope with risk. This study seeks to identify possible drought-vulnerable regions in the Willamette River Basin of the PNW. In order to estimate drought risk in a spatially explicit way, relative Standardized Precipitation Index (rSPI) and relative Standardized Runoff Index (rSRI) were employed. Statistically downscaled climate simulations forcing two greenhouse gas emission scenarios, A1B and B1, were used to investigate the possible changes in drought frequency with 3-, 6-, 12-, and 24-month time scales. The results of rSPI and rSRI showed an increase in the short-term frequency of drought due to decreases in summer precipitation and snowmelt. However, long-term drought showed no change or a slight decreasing pattern due to increases in winter precipitation and runoff. According to the local index of spatial autocorrelation analysis, the Willamette Valley region was more vulnerable (hot spot) to drought risk than the mountainous regions of the Western Cascades and the High Cascades (cold spot). Although the hydrology of the Western Cascades and the High Cascades will be affected by climate change, these regions will remain relatively water-rich. This suggests that improving the water transfer system could be a reasonable climate adaptation option. Additionally, these results showed that the spatial patterns of drought risk change were affected by drought indices, such that appropriate drought index selection will be important in future studies of climate impacts on spatial drought risk.  相似文献   

3.
The study makes a probabilistic assessment of drought risks due to climate change over the southeast USA based on 15 Global Circulation Model (GCM) simulations and two emission scenarios. The effects of climate change on drought characteristics such as drought intensity, frequency, areal extent, and duration are investigated using the seasonal and continuous standard precipitation index (SPI) and the standard evapotranspiration index (SPEI). The GCM data are divided into four time periods namely Historical (1961–1990), Near (2010–2039), Mid (2040–2069), and Late (2070–2099), and significant differences between historical and future time periods are quantified using the mapping model agreement technique. Further, the kernel density estimation approach is used to derive a novel probability-based severity-area-frequency (PBS) curve for the study domain. Analysis suggests that future increases in temperature and evapotranspiration will outstrip increases in precipitation and significantly affect future droughts over the study domain. Seasonal drought analysis suggest that the summer season will be impacted the most based on SPI and SPEI. Projections based on SPI follow precipitation patterns and fewer GCMs agree on SPI and the direction of change compared to the SPEI. Long-term and extreme drought events are projected to be affected more than short-term and moderate ones. Based on an analysis of PBS curves, especially based on SPEI, droughts are projected to become more severe in the future. The development of PBS curves is a novel feature in this study and will provide policymakers with important tools for analyzing future drought risks, vulnerabilities and help build drought resilience. The PBS curves can be replicated for studies around the world for drought assessment under climate change.  相似文献   

4.
气候变化影响了水循环与地区的水量平衡过程,一定程度上改变了干旱的形成与演变条件。以标准化降水量与蒸散发量差值表征水分偏离正常程度的标准化降水蒸散发指数(SPEI)为基础,从多时间尺度联合的视角建立联合干旱指数(JDI),并以广东韶关为例分析修正的新指数JDI在干旱监测中的准确性和有效性。结果表明,综合了不同时间尺度干旱特征信息的JDI能够较全面地反映干旱的形成与演进过程。通过对干旱监测的评价以及与实际旱情的对比分析,验证了联合干旱指数JDI在实际干旱监测中的准确性和有效性,其可作为未来干旱监测的新理想指标。  相似文献   

5.
中国区域性骤发干旱特征分析   总被引:1,自引:1,他引:0  
基于国家气象信息中心2 400多个观测站的候平均日最高气温、GLDAS 2.0/2.1的土壤湿度、蒸散发资料和ERA5的500 hPa位势高度、925 hPa风场再分析资料,定义了格点骤发干旱指数,在分析1979-2017年4-9月中国区域骤发干旱气候特征和骤发干旱指数的经验正交展开空间模态的基础上,确定骤发干旱发生频...  相似文献   

6.
Cambodia is one of the most vulnerable countries to climate change impacts such as floods and droughts. Study of future climate change and drought conditions in the upper Siem Reap River catchment is vital because this river plays a crucial role in maintaining the Angkor Temple Complex and livelihood of the local population since 12th century. The resolution of climate data from Global Circulation Models (GCM) is too coarse to employ effectively at the watershed scale, and therefore downscaling of the dataset is required. Artificial neural network (ANN) and Statistical Downscaling Model (SDSM) models were applied in this study to downscale precipitation and temperatures from three Representative Concentration Pathways (RCP 2.6, RCP 4.5 and RCP 8.5 scenarios) from Global Climate Model data of the Canadian Earth System Model (CanESM2) on a daily and monthly basis. The Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) were adopted to develop criteria for dry and wet conditions in the catchment. Trend detection of climate parameters and drought indices were assessed using the Mann-Kendall test. It was observed that the ANN and SDSM models performed well in downscaling monthly precipitation and temperature, as well as daily temperature, but not daily precipitation. Every scenario indicated that there would be significant warming and decreasing precipitation which contribute to mild drought. The results of this study provide valuable information for decision makers since climate change may potentially impact future water supply of the Angkor Temple Complex (a World Heritage Site).  相似文献   

7.
基于CMIP5中的5个全球气候模式统计降尺度的降水、最高和最低气温等数据,利用标准降水蒸发指数(SPEI)和强度-面积-持续时间(IAD)方法识别全球升温1.5℃与2.0℃情景下中亚地区干旱事件,结合30 m分辨率土地利用数据,探讨中亚干旱事件的演变及耕地暴露度变化。结果表明:相比基准期(1986—2005年),中亚地区的降水和潜在蒸发量均有所增加;全球升温1.5℃与2.0℃情景下,中亚地区的干旱事件频次、强度和面积均将增加,其中重旱和极旱事件的频次和影响面积大幅上升,而中旱事件的频次和影响面积持续下降;1986—2005年中亚地区年均干旱耕地暴露度约11.5万km2,全球升温1.5℃和2.0℃情景下,干旱耕地暴露度将分别上升到17.9万km2和28.6万km2,且暴露在极旱下的耕地面积增加最明显。全球升温1.5℃与2.0℃情景下,增加的干旱事件将会严重威胁当地农业生产和粮食安全,中亚地区需对干旱事件采取长期的减缓与适应措施。  相似文献   

8.
在全球气候变暖的背景下,持续的干旱事件将对生态系统和人类社会产生不利影响。尽管存在多源卫星遥感资料及多种干旱指数,然而区域和全球尺度干旱事件的监测仍具有挑战。采用TRMM(Tropical RainfallMeasuring Mission)数据量化降水异常、MODIS(Moderate Resolution Imaging Spectroradiometer)归一化植被指数(Normalized Difference Vegetation Index,NDVI)和陆表温度(Land Surface Temperature,LST)数据表征植被生长异常,构建了一种兼顾降水异常和植被生长状况异常的多传感器陆表干旱严重程度指数(Multi-sensorsDrought Severity Index,MDSI)。结果表明:MDSI 能够准确检测准全球范围(50°S~50°N,0°~180°~0°)的气象干旱事件,如亚马逊流域2005 和2010 年干旱、中国川渝地区2006 年干旱、中国云南2010 年干旱、非洲东部2011 年干旱、2012 年美国中部干旱等;MDSI 与PDSI(Palmer Drought Severity Index)呈现出大致相同的干湿空间格局,并且MDSI 有助于湿润地区干旱程度的检测。  相似文献   

9.
刘永强 《大气科学》2016,40(1):142-156
历史干旱事件的观测和数值研究表明,植被可通过地—气水分、能量和其他通量交换影响和反馈干旱.本研究旨在了解气候变化情形下植被对干旱趋势的影响和机制.应用美国大陆七个动力气候降尺度区域气候变化情景,计算和分析了现在和未来的干旱指数、空间分布和季节变化.通过比较同一气候区两种植被类型区域干旱强度和频率理解植被的影响.集成分析结果表明,未来美国干旱很可能增加,其中大平原中部所有季节都很显著,而东南和西南地区夏秋更为显著.植被对干旱趋势的影响和气候区有关.在温暖和潮湿/干燥气候区,林地(草地)未来干旱强度和频率的增幅大于对应的农田(荒漠)区域,因此植被可以放大未来干旱的风险.相反,在寒冷和潮湿气候区,林地(草地)区域未来干旱强度和频率增幅较小,表明植被放大未来干旱的作用可能只在某些气候情形下出现.这种植被对未来干旱影响的复杂性和对气候区的依赖性对气候模式提供可靠的干旱模拟和预测及森林管理部门制定适应和减缓气候变化的策略提出了新的挑战.  相似文献   

10.
A decadal change in summer rainfall in the Asian inland plateau(AIP) region is identified around 1999. This decadal change is characterized by an abrupt decrease in summer rainfall of about 15.7% of the climatological average amount,leading to prolonged drought in the Asian inland plateau region. Both the surface air temperature and potential evapotranspiration in the AIP show a significant increase, while the soil moisture exhibits a decrease, after the late 1990s. Furthermore,the normalized difference vegetation index shows an apparent decreasing trend during 1999–2007. Three different drought indices—the standardized precipitation index, the standardized precipitation evapotranspiration index, and the self-calibrating Palmer drought severity index—present pronounced climate anomalies during 1999–2007, indicating dramatic drought exacerbation in the region after the late 1990s. This decadal change in the summer rainfall may be attributable to a wave-like teleconnection pattern from Western Europe to Asia. A set of model sensitivity experiments suggests that the summer warming sea surface temperature in the North Atlantic could induce this teleconnection pattern over Eurasia, resulting in recent drought in the AIP region.  相似文献   

11.
中国夏季和冬季极端干旱年代际变化及成因分析   总被引:4,自引:0,他引:4  
刘珂  姜大膀 《大气科学》2014,38(2):309-321
依据1961~2009年中国区域540个气象站的夏、冬季气温和降水数据,首先采用气候变化趋势转折判别模型(简称PLFIM)分析了中国区域8个分区夏、冬季气温和降水的年代际变化,而后利用PDSI干旱指数研究了夏、冬季极端干旱在年代际尺度上的时空变化特征及其成因。结果表明:1961~2009年中国夏季极端干旱发生率北方大于南方,冬季则为在东部多而在西部少。夏季和冬季极端干旱发生概率在最后一次年代际转折后都呈增加趋势。在区域尺度上,夏季东北、华北和西北地区增加明显,冬季东北、华北、华南、西南地区增加显著。其中,降水在20世纪90年代以前的极端干旱变化中起主导作用,而后由于气候变暖所引起的极端干旱增加趋势逐渐增大,与降水变化的作用相互叠加。  相似文献   

12.
近40年河北省地表干燥度的时空变化   总被引:3,自引:2,他引:1       下载免费PDF全文
利用河北省1970-2007年48个气象台站逐日资料, 采用Penman-Monteith模型计算潜在蒸散量, 由潜在蒸散量和降水量之比构建干燥度指数, 并采用Kriging插值法进行空间插值以分析其区域特征。结果表明:1970-1985年, 由于降水量减少和潜在蒸散量减少, 蒸散量的减少速率大于降水量的减少速率, 地表干燥度指数呈下降趋势, 潜在蒸散量的显著减少是地表干燥度下降的主要原因, 而风速和日照时数的显著降低决定了潜在蒸散量的显著下降; 1986-2007年, 由于年平均气温的显著升高, 潜在蒸散量增加, 使得地表干燥度略呈上升趋势。河北省地表干燥度高值区分布在张家口地区的桑洋盆地和坝西高原, 而低值区主要在燕山南麓低山丘陵地区的承德西南部、唐山的北部和秦皇岛中北部大部分地区。干燥度减少区域主要集中在河北省东北部至河北省西部的带状区域。  相似文献   

13.
滕州市近50年气候干湿变化   总被引:1,自引:0,他引:1  
张美玲  张慧 《气象科技》2007,35(4):495-499
利用滕州市1956~2005年降水量、平均气温资料,用Holdridge干燥度指数来分析近50年气候干湿变化趋势和特征。滕州市近50年来在年生物温度、年可能蒸散量极显著上升背景下,年降水量不显著的减小趋势,造成年水分盈亏量显著亏损及年干燥度指数显著增大,总体呈现暖干化趋势。年干燥度指数变化有明显的阶段性,干湿期交替变化,大体经历了3个湿期和2个干期。1976年年干燥度指数发生由偏湿向偏干的突变,突变后气候类型分布发生显著变化。通过对近50年年干燥度指数滑动平均值和标准差分析发现:随着干燥度指数平均值的增大,异常湿事件明显减少,而异常干事件明显增多,同时,随着标准差的增大,异常干湿事件频率明显增大。  相似文献   

14.
This paper characterizes droughts in Romania using the approach of both the standardized precipitation index (SPI) and climatic water deficit (WD). The values of the main climatic factors (rainfall, temperature, reference evapotranspiration, etc.) were obtained from 192 weather stations in various regions of Romania. Penman–Monteith reference evapotranspiration (ETo-PM) was used to calculate WD as the difference between precipitation (P) and ETo-PM. SPI was calculated from precipitation values. There is a clear difference between drought and aridity. Drought occurrence determines higher WD values for plains and plateaus and lower climatic excess water (EW) values for high mountains in Romania, depending on the aridity of the specific region considered and drought severity. WD calculated as mean values for both normal conditions and, for all locations studied, various types of drought was correlated with mean annual precipitation and temperature, respectively. The combined approach of WD and SPI was mainly carried out for periods of 1 year, but such studies could also be done for shorter periods like months, quarters, or growing season. The most arid regions did not necessarily coincide with areas of the most severe drought, as there were no correlations between WD and SPI and no altitude-based SPI zones around the Carpathian Mountains, as is the case for other climate characteristics, soils and vegetation. Water resource problems arise where both SPI values characterize extremely droughty periods and WD values are greatly below ?200 mm/year. This combined use of SPI and WD characterizes the dryness of a region better than one factor alone and should be used for better management of water in agriculture in Romania and also other countries with similar climate characteristics.  相似文献   

15.
基于气候系统内在层次性的气象干旱指数研究   总被引:3,自引:1,他引:2  
侯威  张存杰  高歌 《气象》2012,38(6):701-711
气候系统除了具有非线性/非平稳性,还有层次性,许多大小不一的时空尺度构成了多层次结构,不同层次的气候系统具有不同的可预报性和稳定性。对于一种气象干旱指数而言,主要考虑从某一时段(尺度)内降水、温度、土壤湿度等要素测量值来建立干旱指数。本文首先从气候系统的非线性/非平稳性和内在层次性出发,针对中国不同地区的区域气候及其变化特征,使用信息熵方法从降水观测资料中提取出区域降水的两个(均态和变化)本征尺度,提出一种基于区域气候系统层次性内在特征的气象干旱指数MSPI。以2011年长江中下游春季严重气象干旱的发生、发展、持续、缓解情况为例,对MSPI的干旱监测能力进行检验。发现MSPI对不同程度的干旱都有较好的表征能力,并且对于干旱过程也有较好的识别能力。从各方面综合考虑,MSPI是一种可以较好满足逐日气象干旱监测、检测需求的气象干旱指数。在实际应用中,气象干旱指数MSPI可以作为其他不同时间尺度上的各种干旱指数的有益补充。  相似文献   

16.
RCP4.5情景下中国未来干湿变化预估   总被引:5,自引:0,他引:5  
刘珂  姜大膀 《大气科学》2015,39(3):489-502
本文采用国际耦合模式比较计划第五阶段(CMIP5)中21个气候模式的试验数据, 利用土壤湿度以及由其他8个地表气象要素计算所得的干旱指数, 预估了RCP4.5(Representative Concentration Pathway 4.5)情景下21世纪中国干湿变化。结果表明:全球气候模式对1986~2005年中国现代干湿分布具备模拟能力, 尽管在西部地区模式与观测间存在一定的差异。在RCP4.5情景下, 21世纪中国区域平均的标准化降水蒸散发指数和土壤湿度均有减小趋势, 与之对应的是短期和长期干旱发生次数增加以及湿润区面积减小。从2016到2100年, 约1.5%~3.5%的陆地面积将从湿润区变成半干旱或半湿润区。空间分布上, 干旱化趋势明显的区域主要位于西北和东南地区, 同时短期和长期干旱发生次数在这两个地区的增加幅度也最大, 未来干旱化的发生时间也较其他地区要早;只在东北和西南地区未来或有变湿倾向, 但幅度较小。在季节尺度上, 北方地区变干主要发生在暖季, 南方则主要以冷季变干为主。造成中国干旱化的原因主要是由降水与蒸散发所表征的地表可用水量减少。  相似文献   

17.
The common versions (referred to as self-calibrated here) of the Standardized Precipitation Index (SPI) and the Palmer Drought Severity Index (PDSI) are calibrated and then applied to the same weather series. Therefore, the distribution of the index values is about the same for any weather series. We introduce here the relative SPI and PDSI, abbreviated as rSPI and rPDSI. These are calibrated using a reference weather series as a first step, which is then applied to the tested series. The reference series may result from either a different station to allow for the inter-station comparison or from a different period to allow for climate-change impact assessments. The PDSI and 1–24 month aggregations of the SPI are used here. In the first part, the relationships between the self-calibrated and relative indices are studied. The relative drought indices are then used to assess drought conditions for 45 Czech stations under present (1961–2000) and future (2060–2099) climates. In the present climate experiment, the drought indices are calibrated by using the reference station weather series. Of all drought indices, the PDSI exhibits the widest spectrum of drought conditions across Czechia, in part because it depends not only on precipitation (as does the SPI) but also on temperature. In our climate-change impact experiments, the future climate is represented by modifying the observed series according to scenarios based on five Global Climate Models (GCMs). Changes in the SPI-based drought risk closely follow the modeled changes in precipitation, which is predicted to decrease in summer and increase in both winter and spring. Changes in the PDSI indicate an increased drought risk at all stations under all climate-change scenarios, which relates to temperature increases predicted by all of the GCMs throughout the whole year. As drought depends on both precipitation and temperature, we conclude that the PDSI is more appropriate (when compared to the SPI) for use in assessing the potential impact of climate change on future droughts.  相似文献   

18.
Drought is one of the crucial environmental factors affecting crop production. Synchronizing crop phenology with expected or predicted seasonal soil moisture supply is an effective approach to avoid drought impact. To assess the potential for drought avoidance, this study investigated the long-term climate data of four locations (Bojnourd, Mashhad, Sabzevar, and Torbat Heydarieh) in Khorasan province, in the northeast of Iran, with respect to the four dominant crops (common bean, lentil, peanut, and potato). Weekly water deficit defined as the difference between weekly precipitation and weekly potential evapotranspiration was calculated. Whenever the weekly water deficit was larger than the critical water demand of a crop, the probability for drought was determined. Results showed that Sabzevar has the highest average maximum temperature (24.6 °C), minimum temperature (11.7 °C), weekly evapotranspiration (32.1 mm), and weekly water deficit (28.3 mm) and has the lowest average weekly precipitation (3.8 mm). However, the lowest mean maximum temperature (19.7 °C), minimum temperature (6.9 °C), weekly evapotranspiration (22.5 mm), and weekly water deficit (17.5 mm) occur in Bojnourd. This location shows the shortest period of water deficit during the growing season for all crops except potato, which also experienced drought at the end of the growing season. Sabzevar and Torbat Heydarieh experienced the highest probability of occurrence and longest duration of drought during the growing season for all crops. The result of this study will be helpful for farmers in order to reduce drought impact and enable them to match crop phenology with periods during the growing season when water supply is more abundant.  相似文献   

19.
利用条件植被指数评价西藏植被对气象干旱的响应   总被引:1,自引:1,他引:0       下载免费PDF全文
基于2000—2014年4—10月西藏气象站遥感干旱指数 (条件植被指数,VCI) 和气象干旱指数 (标准降水指数,SPI) 之间的相关性,评估植被对气象干旱的响应特征,通过分析气候环境要素对响应特征的影响并归纳相应规则,获取西藏地区植被对气象干旱有明显响应的区域分布。结果显示:VCI与12周时间尺度的SPI具有较强相关性,说明西藏地区植被生长对降水的响应大约滞后12周;植被对气象干旱响应不敏感的原因主要包括气候极度干燥或极度湿润、土地覆盖类型为森林、年平均归一化植被指数 (NDVI) 值过小、多年NDVI变化标准差过小、有降水之外的其他水源补给等;基于对区域气候环境要素特征的分析,可以得出西藏中部偏南地区植被对气象干旱有明显响应,主要包括拉萨地区、山南地区北部、日喀则地区东部、那曲地区中部和西南部、阿里地区的东南部。  相似文献   

20.
Drought is one of the most devastating natural hazards faced by the Southern United States (SUS). Drought events and their adverse impacts on the economy, society and environment have been extensively reported during 1895?C2007. Our aim is thus to characterize drought conditions in the SUS and explore the impacts on terrestrial ecosystem function (i.e., net primary productivity (NPP) and net carbon exchange (NCE)). Standard precipitation index (SPI) was used to characterize drought intensity and duration, and a process-based ecosystem model was used to explore the relationship between drought and ecosystem function. Combining overall information on growing-season SPI, drought area and duration, we concluded there was no significant change in drought conditions for the SUS during 1895?C2007. However, increased drought intensity was found for many areas in the east, resulting in significant decreases in NPP for these areas, with the largest decrease up to 40% during extreme droughts. Changes in precipitation patterns increased C emissions of 0.16 Pg (1 Pg?=?1015?g) in the SUS during 1895?C2007. The west (dry region) acted as a C sink due to increased precipitation, while the east (water-rich region) acted as a C source due to increased drought intensity. Both NPP and NCE significantly increased along a gradient of declining drought intensity. Changes in precipitation resulted in C sources in forest, wetland, and cropland ecosystems, while C sinks in shrubland and grassland ecosystems. Changes in air temperature could either enhance or reduce drought impacts on NPP and NCE across different vegetation types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号