首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the technique and results of modelling the solar radio emission during the maximum phase of the solar eclipse of March 29, 2006 on the RATAN-600. The aim of modelling is to refine the brightness temperature of the solar corona at the distances up to two solar radii from the center of the optical disk of the Sun. We obtained the distribution of brightness temperature in the vicinity of the coronal hole above the solar North Pole at the wavelength of 13 cm. The results of modelling showed that brightness temperatures of the coronal hole at the distances greater than 1.02 RC (here RC is the radius of the optical disk of the Sun) is substantially lower than the expected average brightness temperature of a typical coronal hole, and that of the quiescent Sun (below 30000 K) at the wavelength of 13 cm. The classical Baumbach-Allen formula for electron density in a spherically symmetric corona agrees with the results of observations starting at distances of (1.4–1.5) RC.  相似文献   

2.
The brightness temperature distributions of the solar atmosphere in the polar region at the distances from one to two solar radii during the solar activity minimum are reported. Observations of the maximum phase of the solar eclipse of March 29, 2006 were carried out simultaneously on two sectors of the RATAN-600 radio telescope over a wide range of centimeter waves, 1–31 cm. This study is based on a comparison of models and observations carried out on the northeastern sector of the RATAN-600.  相似文献   

3.
We report the results of RATAN-600 radio telescope observations of the fine structure of the source of cyclotron microwave emission (SCMR) located in the solar corona above the main sunspot of NOAA11899 active region. Compared to earlier and mostly episodic observations of the SCMR, our regular observations with RATAN-600 radio telescope showed rather conclusively that the variation of the structure of the SCMR as a function of the angle of view in the present case is of geometric nature. The behavior of image variations generally agree with the computations performed by Gelfreikh and Lubyshev in terms of the simplest model of the solar atmosphere above the sunspot. The results of their computations are widely used for interpreting observations.  相似文献   

4.
The results of observations of the radio emission of a high-latitude prominence located in the NE part of the solar limb are discussed. Observations were performed on the radio telescope RATAN-600 using its Northeastern sector and Southern sector with a periscope during the maximum phase (0.998) of the solar eclipse of March 29, 2006. The prominence was studied in the wavelength interval 1.03 ÷ 5.0 cm. The absence of the background illumination from the solar disk allowed us to study the parameters of the radio emission of the high-latitude prominence (? = 45°, NE limb of the Sun). Observations of the solar limb at the time of the maximum phase made it possible to record very small radio fluxes from the prominence, which amounted to 0.05 ÷ 0.01 s.f.u. in the wavelength interval from 1.84 to 5.0 cm. The position of the maximum of the radio emission of the prominence coincides, according to the results of observations performed on both sectors, with the summit of the prominence as seen on the solar image taken in the He II 304 Å line (SOHO, ? = 45°, NE limb of the Sun). The degree of polarization is P ≈ 7 ÷ 16% at 1.88 ÷ 5.0 cm. If interpreted in terms of the thermal mechanism considered here, polarized emission corresponds to a magnetic-field strength of H ? (550 ÷ 100) G in the prominence region.  相似文献   

5.
We report the results of spectral-polarization observations of the active region NOAA 10848 made with the RATAN-600 radio telescope. High spectral resolution (1%) of observations allowed obtaining detailed temperature height profiles for the sources located above the sunspots in the transition region from the chromosphere to the corona. The resulting vertical profiles indicate that the transition region above the sunspots may extend over a considerable height interval and be characterized by a gradual increase of temperature—a pattern that is inconsistent with model atmospheres having a sharp temperature increase in the transition region.  相似文献   

6.
New elements of the algorithmic and software bases of the ephemeris support for the RATAN-600 radio telescope observations of distant radio sources and objects of the Solar system are briefly described.  相似文献   

7.
Solar radio and microwave sources were observed with the Very Large Array (VLA) and the RATAN-600, providing high spatial resolution at 91 cm (VLA) and detailed spectral and polarization data at microwave wavelengths (1.7 to 20 cm - RATAN). The radio observations have been compared with images from the Soft X-ray Telescope (SXT) aboard theYohkoh satellite and with full-disk phoptospheric magnetic field data from the Kislovodsk Station of the Pulkovo Observatory. The VLA observations at 91 cm show fluctuating nonthermal noise storm sources in the middle corona. The active regions that were responsible for the noise storms generally had weaker microwave emission, fainter thermal soft X-ray emission, as well as less intense coronal magnetic fields than those associated with other active regions on the solar disk. The noise storms did, however, originate in active regions whose magnetic fields and radiation properties were evolving on timescales of days or less. We interpret these noise storms in terms of accelerated particles trapped in radiation belts above or near active regions, forming a decimetric coronal halo. The particles trapped in the radiation belts may be the source of other forms of nonthermal radio emission, while also providing a reservoir from which energetic particles may drain down into lower-lying magnetic structures.Presented at the CESRA-Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   

8.
We present the results of our study of Jupiter and its radiation belts with a resolution of 6 arcsec at a frequency of 30 GHz using the RATAN-600 radio telescope and a MARS matrix radiometer with a sensitivity of about 6 mK ?1/2. We monitored the integrated emission from the Jovian disk with a signal-to-noise ratio of more than 1000 for 30 days and showed its radio emission to be highly stable (≈1%). Based on daily data for the one-dimensional radio brightness distribution over the disk, we mapped the longitudinal radio brightness distribution over 100 rotation periods of Jupiter around its axis. Neither hot nor cold spots with a temperature contrast of more than 1 K were detected; their contribution to the total radio flux from the Jovian disk was no more than 0.2%. The one-dimensional latitudinal (longitude-averaged) distribution obtained on VLA with a similar resolution is shown to be an order of magnitude less uniform than the one-dimensional longitudinal (latitude-averaged) distribution obtained on RATAN-600. We have studied the radiation belts at such high frequencies for the first time and estimated their intensities and variability levels under the effect of external factors. The variable component of the radiation belts was shown to have not exceeded 0.5% of the integrated spectrum of Jupiter over the entire period of its observations. We estimated the contribution of the Galilean satellites (“Galilean noise”) in low-resolution observations; the accuracy of allowing for this noise is determined by the accuracy of estimating the temperatures of the satellites at the observing frequency. The uncertainty in the total flux does not exceed 0.1%.  相似文献   

9.
Radio astronomy studies of the solar atmosphere possess a very important, not duplicated by other methods, place in the study of solar activity at all stages—from the birth of an active region until its collapse. A significant progress in these studies can be achieved in the implementation of new technical possibilities, such as an increase in the sensitivity of radio telescopes, a detailed spectral analysis over a wide frequency range, high temporal resolution and a broad coverage range in time. We report about the implementation of regular observations with a new spectral and polarization high-resolution system SPHRS, installed at the radio telescope RATAN-600.We describe the concept of the new system and the methods of its implementation.  相似文献   

10.
Deep 1–49 cm surveys of the circumzenithal sky area performed using the RATAN-600 radio telescope allowed the spectral index of Galactic synchrotron emission in the 7.6–49 cm wavelength interval to be refined. The data obtained are inconsistent with the model of synchrotron emission adopted to interpret the results of the first year of the WMAP mission, which led to the hypothesis of the early secondary ionization of the Universe at redshifts Z > 10–30. New observations made with the RATAN-600 demonstrated the possibility of deep studies of the intensity and polarization of the microwave background (the E component) in ground-based experiments at short centimeter wavelengths. Galactic synchrotron emission may as well limit the possibilities of space- and ground-based studies of the polarization of cosmic microwave background radiation arising as a result of scattering induced by relic gravitational waves (the B component). The sky area studied with the RATAN-600 is intended to be used to interpret the PLANCK mission data in order to ensure a more detailed account of the role of the Galactic synchrotron emission.  相似文献   

11.
Using microwave observations made with the Nobeyama radioheliograph (=1.76 cm), we have studied temporal variations of sunspot-associated sources in the circularly polarized component. For all three cases of well-developed and rather stable sunspots we found nearly harmonic oscillations with periods in a range of 120–220 s. In one case of an unstable and quickly devolving active region, the fluctuations appear to be irregular with no dominant period. Sunspot-associated solar radio sources are known to be generated by cyclotron radiation of thermal electrons in magnetic tubes of sunspots at the level of the lower solar corona or chromosphere–corona transition region (CCTR). At the wavelength of 1.76 cm, the polarized emission arises in a layer where the magnetic field is B=2000 G (assuming the emission generated at the third harmonic of electron gyrofrequency). We suggest that the observed effect is a manifestation of the well-known 3-min oscillations observed in the chromosphere and photosphere above sunspots. The observed effects are believed to be a result of resonance oscillation of MHD waves inside a magnetic tube. Radio observations of this phenomenon open a new tool for studying regions of reflection of MHD waves near CCTR level. The method is very sensitive both to the height of the CCTR and magnetic fields above sunspots. Thus, detection of oscillations of the height of the transition region even with an amplitude of a few km are possible. The use of a spectrum of one of the observed sources obtained with the radio telescope RATAN-600 allows us to conclude that oscillations in magnetic field strength of about 4 G could be responsible for the effect and are reliably registered. The appearance of the famous 5-min oscillations in the solar atmosphere was also registered in some spectra of radio oscillations.  相似文献   

12.
We report the development of a multichannel data acquisition and control system for the Spectral and Polarization High-Resolution Solar Research System, installed at the RATAN-600 radio telescope. This facility provides high-speed registration of signals from 240 channels and controls the preparation for observations and the process of automatic observations. The hardware is made in the form factor of 3U Evromekhanika modules. The measurement facility is controlled by the software based on the QT cross-platform library (the open source version), which can be run both on Linux and Windows operating systems. The data are written to a magnetic carrier and then transferred to the computer network of the Special Astrophysical Observatory for archiving, and can be accessed by external users.  相似文献   

13.
日食为射电天文提供了一维高空间分辨率太阳射电观测机会.日食射电观测在太阳射电物理的发展上起过重要的作用.文中对日食射电观测的若干重要因素作了介绍和分析.日食射电观测在我国太阳射电天文发展上也起了重要作用.文中简要介绍了在我国组织观测的1958年、1968年、1980年及1987年的太阳射电日食观测及其主要结果.  相似文献   

14.
The refined data on the diffraction scattering of RATAN-600 allowed the telescope field of view to be increased substantially at large elevations. Amethod, which can be used to reconstruct the parameters of the sources passing at angular distances fromthe beamaxis that are several dozen times greater than the half-power width of the beam, is analyzed. The knowledge about wide scattering of RATAN-600 allowed the noise from background radio sources at zenith to be reduced by one order of magnitude and flux sensitivity of the radio telescope to be increased by the same factor without resorting to two-dimensional mapping. Methods for cleaning one-dimensional records of the RZF survey are suggested that use model scans based on the data of the NVSS survey and MHAT filtering. The latter proved to be an especially efficient tool for suppressing sky noise and identifying sources in the central section of the survey. The flux sensitivity of RATAN-600 is estimated with new opportunities taken into account.  相似文献   

15.
We present the automated systemfor estimating the parameters of radio sources observed on all available continuum radiometers (two receiving facilities of secondary mirrors No. 1 and No. 2 with a total of 30 radiometers) developed at RATAN-600 radio telescope and put into normal operation. The system is also used for the monitoring of the parameters of the antenna and receiving systems of RATAN-600 radio telescope, which is carried out using current measurements of calibration radio sources.  相似文献   

16.
This paper summarizes the analysis of the radio observations of the solar eclipse at wavelengths 3.2, 11.1 and 21 cm in Xinjiang, on 1968 Sept. 22. From the observations, we have determined the flux densities, angular diameters and heights of the localized radio sources on the solar disk, circumstances of the radio eclipse, equivalent radius of the radio Sun and certain features of a small radio burst that occurred during the eclipse. We have also investigated the correlation between the flux density of the localized sources and the activity of the active regions, as measured by the integrated brightness of plages and the sunspot area.  相似文献   

17.
In the present paper we present the results of measurement of magnetic fields in some sunspots at different heights in the solar atmosphere, based on simultaneous optical and radio measurements. The optical measurements were made by traditional photographic spectral observations of Zeeman splitting in a number of spectral lines originating at different heights in the solar photosphere and chromosphere. Radio observations of the spectra and polarization of the sunspot - associated sources were made in the wavelength range of 2–4 cm using large reflector-type radio telescope RATAN-600. The magnetic field penetrating the hot regions of the solar atmosphere were found from the shortest wavelength of generation of thermal cyclotron emission (presumably in the third harmonic of electron gyrofrequency). For all the eight cases under consideration we have found that magnetic field first drops with height, increases from the photosphere to lower chromosphere, and then decreases again as we proceed to higher chromosphere and chromosphere-corona transition region. Radio measurements were found to be well correlated with optical measurements of magnetic fields for the same sunspot. An alternative interpretation implies that different lines used for magnetic field measurements refer to different locations on the solar surface. If this is the case, then the inversion in vertical gradients of magnetic fields may not exist above the sunspots. Possible sources of systematic and random errors are also discussed.  相似文献   

18.
The results of microwave observations of the polarized emission of active regionsmade with the RATAN-600 radio telescope are used to develop the method for determining the structure of the magnetic field of these regions at coronal heights. About 1000-G-strong magnetic fields are observed in the solar atmosphere at rather high altitudes (from 10 to 25 Mm). This result is confirmed fairly well by the ultraviolet observations of magnetic loops, it is consistent with earlier radio-astronomical observations of the magnetic field at the height of the transition region, and it corresponds as well, if interpreted in terms of the dipole magnetic field model, to the vertical gradients of the photospheric magnetic field.  相似文献   

19.
Lites  B.W.  Card  G.  Elmore  D.F.  Holzer  T.  Lecinski  A.  Streander  K.V.  Tomczyk  S.  Gurman  J.B. 《Solar physics》1999,190(1-2):185-206
Solar Physics - This paper presents first observations of dynamics of the white-light solar corona detected during the few minutes of totality of a solar eclipse. Perturbations of a polar plume...  相似文献   

20.
We present a discussion of the gradual burst event on May 13,1985 which is based on observations of the RATAN-600 telescope at ten fixed frequencies in the range between 37.5 and 0.95 GHz (0.8 and 31.6 cm wavelength) and on time profiles of patrol observations of the Observatory for Solar Radio Astronomy at Tremsdorf near Potsdam. This up to now most complete data set allows new conclusions on the extended spectral/spatial structure of the source region.There is strong evidence that only less than 24% of the microwave flux from this event is emitted by an excessive small-scale burst source while the bulk of the burst emission comes from a larger region consisting of two major components covered by the source area of the S-component radiation. The different components of the burst and S-component radiation are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号