首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
赵平  胡昌琼  孙淑清 《大气科学》1992,16(2):177-184
本文是对第一部分的数值试验结果进行涡度方程以及位能、散度风动能和旋转风动能之间的能量转换函数诊断分析,并讨论了地形动力作用和潜热加热影响西南低涡形成和发展的物理过程.结果表明:从涡度收支上看,地形和潜热加热通过增大辐合使涡度增加.从能量转换上看,在低层地形和潜热加热加强位能向散度风动能转换以及散度风动能向旋转风动能转换;在高层,地形通过加强旋转风动能向散度风动能转换,使高空辐散增强,而潜热加热通过加强位能向散度风动能转换亦使高空辐散增强.  相似文献   

2.
气旋爆发性发展过程的动力特征及能量学研究   总被引:19,自引:3,他引:19  
吕筱英  孙淑清 《大气科学》1996,20(1):90-100
本文对不同路径的爆发性气旋进行了动力特征及能量学研究。发现高空大值位涡空气的下伸是气旋爆发性发展的一个重要条件。初生气旋逐渐向强位涡区移近并形成上下位涡区相接的形势。使气旋迅速发展。高空急流与气旋发展有密切关系。发展中的气旋明显地向着急流左侧的辐散区移动。急流的突然加强及高空强风动量的不断下传,构成了下层的强风带及上下一致的急流结构。能量学研究指出在气旋发展前气旋内散度风动能向旋转风动能的转换突然增强。散度风动能在爆发气旋发展时有明显增长。  相似文献   

3.
中尺度低涡发展时高层流场特征及能量学研究   总被引:4,自引:4,他引:4       下载免费PDF全文
本文通过对一次长江中游中尺度低涡的分析发现,在这类斜压性低涡发展时,低涡西侧冷区对流顶明显下降,在低涡区发生折叠现象.与大位涡值相联系的平流层空气从该处下沉至对流层,对流顶下陷比对流活动区对流顶高度变化要早且明显.中尺度涡旋发展所需要之动能主要取自辐散风动能,在对流层高层和低层这种正向转换最为清晰,而整个气柱中位能向辐散风动能转换,以支持它在涡旋发展过程中之消耗.但高层与低层的情况不同.在100hPa高空辐散风动能既支持了涡旋动能,又向总位能转换.分析表明,高层对流层流场在中尺度系统发展过程中是十分活跃的,必须引起足够的重视.  相似文献   

4.
8014号热带气旋发生发展过程的能量学诊断研究   总被引:5,自引:1,他引:5  
利用动能和总位能收支方程,对8014号强热带风暴过程进行了能量学诊断研究。结果表明,地转作用是该热带气旋中辐散风动能向旋转风动能转换的主要物理机制;非绝热加热是热带气旋发展的主要能源,其对总位能的制造大部分用于次网格耗散和侧边界输出,只有一小部分被转化为辐散风动能;两个转换函数C(P,Kx)和C(Kx,Kφ)在时空分布上具有很好的一致性;该热带气旋与周围环境场有明显的能量交换,在高层有总位能和旋转风动能输出,在低层有辐散风动能输入;在总动能收支中,辐散风作功是主要的功能产生项,旋转风作功主要是消耗动能。  相似文献   

5.
李超  崔春光  王晓芳  赖安伟 《气象》2017,43(11):1326-1338
本文基于CFSR每日4个时次、水平分辨率为0.5°×0.5°全球预报场资料,美国NCEP中心每日4个时次、水平分辨率为1°×1°FNL全球再分析格点资料,以及华中地区国家基准站逐小时的加密降水资料,围绕2015年6月1日华中地区的一次中尺度对流低涡(mesoscale convective vortex,MCV)天气过程,通过WRF模拟和能量诊断的方法,重点研究了低涡增强期内的能量分布特征及其对低涡发展的影响机制。研究结果表明:此次MCV初生于湖北中部地区,低涡生成后向湖北东北部大别山地区移动且不断发展加强,MCV增强阶段的降水带分布由早期的三中心分布(分别位于宜昌、荆州、随州)演变为后期的纬向型雨带分布。降水产生的凝结潜热释放、对流有效位能的增强、低层暖湿气流的输送以及中层干冷空气的侵入等有利的环境场条件对低涡的增强起到了重要的推动作用。低涡的增强对能量演变有重要影响,具体表现为一方面MCV外围辐合气流随低涡发展而增强,引起对流层低层扰动动能的增加,另一方面MCV外围降水产生的凝结潜热,导致对流层中层扰动有效位能的增加,之后通过垂直气流作用使扰动有效位能向上输送,从而使对流层高层的扰动有效位能增加。另外,此次MCV增强阶段的能量制造项依次为:扰动有效位能向扰动动能的转换,不同高度层的基本气流黏性力作用效果,纬向平均有效位能向扰动有效位能的转换,以及来自系统外部扰动动能的输入。其中,扰动有效位能向扰动动能转换是对MCV发展增强的直接贡献项,对其空间分布特征进一步分析可知,在对流层低层和顶层,扰动有效位能向扰动动能转换,使辐合辐散气流增强;而在对流层中高层,扰动动能向扰动有效位能转换,为低涡发展成熟后的继续维持储备了必要的能量。  相似文献   

6.
利用欧洲中心ERA5 逐小时再分析资料对一次东北移西南涡活动特征进行诊断分析,得到以下结论:本次西南涡是在稳定的“东高西低”环流形势下生成和发展,高原涡诱发西南涡生成,在高原气流的引导下向东北方向移动,西南涡在向东北移动的过程中和高原涡耦合促使西南涡进一步发展。西南涡东北移过程中均有低空急流配合。西南涡初生阶段较为浅薄,动力特征较弱;东移发展过程中动力作用增强,正涡度发展至对流层顶,正涡度柱内“低层辐合-高层辐散”的特征显著,高层辐散大于低层辐合,强的高空抽吸作用促使低层辐合增强。涡度平流项、垂直输送项和拉伸项对西南涡的发展起到主要作用。视热源和视水汽汇在低涡发展阶段,中低层暖湿空气的加热使空气增温,从而使地面减压,有利于西南涡的发展;中高层凝结潜热和感热加热,使得对流层高层增温,促使高层出流加强,进一步增强西南涡的发展。  相似文献   

7.
赵平  孙淑清 《大气科学》1991,15(6):46-52
本文用中尺度有限区域模式对1981年7月11—14日的一次西南低涡暴雨过程进行数值试验,并讨论了地形动力作用和潜热加热对西南低涡形成的影响。 在基本试验中,较好地模拟了西南低涡的形成,其位置以及引起的降水量与实际情况比较一致。地形试验表明,地形动力作用对高原南侧的西南气流具有明显的阻挡作用,并决定着西南低涡的形成。潜热试验表明,潜热通过加强西南低涡上空高层辐散和低层辐合,使该低涡发展。  相似文献   

8.
台风区和外围暴雨区的旋转风,散度风动能收支   总被引:1,自引:0,他引:1  
用完全的散度风(VD)和旋转风(VR)动能收支方程对8116台风和8407台风以及8116台风与其外围暴雨区的关系作了讨论,结果表明:台风区的有效位能通过散度风动能(KD)转换为旋转风动能(KR),台风向区域外部输出功能,在暴雨区上空通过涡度,散度场相互作用的转换机制由KR向KD转换,散度风加大触发对流发展产生暴雨,这可能是台风与其外围暴雨联系的一种能量过程。  相似文献   

9.
一次高原低涡诱发西南低涡耦合加强的动力诊断分析   总被引:1,自引:0,他引:1  
利用2013年6月29日—7月2日期间逐6 h的NCEP 0. 5°×0. 5°全球预报场再分析GFS (Global Forecast System)资料,对一次引发特大暴雨的西南低涡和高原低涡耦合贯通加强过程进行动力诊断分析,结果表明:西南低涡和高原低涡耦合区上方在不同阶段均维持正涡度柱,呈现低空辐合和高空辐散的特征,并伴有强烈上升运动。垂直运动在耦合开始阶段最强,正涡度柱在耦合强盛阶段显著增强,高原低涡和西南低涡耦合贯通后,改变了涡度的垂直特征。西南低涡发展维持的涡动动能主要源于水平通量散度项和涡动动能制造项,摩擦耗散项和垂直通量散度项是其主要消耗项。高原低涡发展维持的涡动动能主要源于垂直通量散度项和区域平均动能与涡动动能之间的转换项,涡动动能制造项出现负值是其涡动动能减弱的主要原因。耦合期间强烈垂直运动将西南低涡的涡动动能向高原低涡输送,西南低涡对高原低涡发展维持有重要动力作用。  相似文献   

10.
东海地区温带气旋爆发性发展的动力学分析   总被引:13,自引:8,他引:13  
仪清菊  丁一汇 《气象学报》1992,50(2):152-166
本文对东海地区两个气旋波的爆发性发展过程进行了动力学分析。结果表明:明显的对流层中下部增温、增温以及不稳定的大气层结和强高空西风急流,及其有关的次级环流的作用是气旋爆发性发展的重要条件。在气旋爆发性发展过程中,上升运动、正涡度以及高空辐散和低空辐合的散度场皆达到最强。加热场的计算也表明非绝热加热特别是凝结潜热释放也在气旋爆发时刻达到最强,最大加热区位于气旋的东北象限内。这时涡动动能的增加十分显著,它主要是由涡动有效位能向涡动动能的转换造成,这说明气旋的爆发性发展是与斜压发展密切有关。  相似文献   

11.
北上台风暴雨过程涡散场的能量收支和转换特征   总被引:7,自引:2,他引:5  
于玉斌  姚秀萍 《气象学报》1999,57(4):439-449
利用辐散风和旋转风的动能收支方程,对北方一次北上台风倒槽暴雨过程暴雨区内的涡散场能量收支和转换进行了计算.结果表明:暴雨区内动能的增加是暴雨增幅的一个主要原因.暴雨发展时,就旋转风动能(KR)而言,旋转风动能通量(HFR)辐合是主要能源,而旋转风的动能产生项(GR)是主要能汇;就辐散风动能(KD)而言,辐散风的动能产生项(GD)是主要能源,辐散风动能通量(HFD)辐散是主要能汇;总动能水平通量(HF)提供的辐合主要表现于对流层中、低层,这就使得低层辐合加强,上升运动加强,有利于暴雨的增幅.在暴雨过程中次网格尺度效应由能源转变为能汇,在暴雨发展之时能汇减小;能量的转换项C(KD,KR)总为正值,在转换项中,地转效应项的贡献很大.说明暴雨过程能量均由KDKR转换,也就是说有效位能经KDKR转换,充分说明了在整个暴雨过程中,尽管辐散风动能变化(∂KD/∂t)很小,但是它在其中充当“桥梁”作用,C(KD,KR)在暴雨发展时达到最大,此时能量转换最为旺盛;对流层低层辐散风动能向旋转风动能的转换是暴雨产生和发展的重要条件.此次暴雨过程,在暴雨区内表现为斜压不稳定和正压稳定共存的特征,其发展过程是系统斜压不稳定增长,正压稳定性减弱的过程,暴雨增幅的另一个重要原因就是暴雨区内低层斜压的发展.  相似文献   

12.
两次高原低涡东移特征及发展机制动力诊断   总被引:6,自引:1,他引:5  
应用NCEP再分析资料,进行物理量计算,并结合地面和探空气象资料以及卫星探测资料,从动力学角度分析2008年7月19-22日和2007年7月29日-8月1日两次高原低涡东移特征及演变机制,获得低涡东移发展或减弱的一些特征和机理认识.研究结果表明,低涡东移过程中,正涡度东传特征明显.低涡东移过高原后呈维持加强趋势,表现为低涡过高原前,深厚的正涡度层配合深厚的上升运动,以及对流层中低层较强的辐合;低涡过高原后,正涡度强度增加,对流层中低层的辐合、上升运动增大,对流层中高层的辐散增加.而低涡东移后呈减弱趋势,表现为正涡度强度、垂直上升速度较东移发展低涡要弱;低涡过高原后,正涡度强度减弱,整层的辐合上升运动减弱明显.低涡东移过高原,与低涡发展密切相关的正涡度带的维持、发展或减弱的动力机制主要受控于总涡源的发生、发展与减弱.辐合辐散流场维持发展,对总涡源有较大影响,对低涡维持发展有重要作用;地形的动力作用使其大地形后的背风坡更易低涡发展;涡区附近及以北盛行偏北气流有利于低涡发展;垂直涡度输送不利于对流层中低层低涡加强.分析还表明,冷空气触发大气不稳定能量释放,是低涡发展的重要机制;冷暖卒气交汇导致辐合流场的维持和加强,是低涡得以维持和加强的重要因素.  相似文献   

13.
在第(一)部分的基础上,进一步讨论辐散风动能和旋转风动能的收支以及这两种动能之间的转换过程。结果表明,尽管辐散风动能在总动能中所占比重很小,但它的变化与强对流天气过程的发生发展有着更为密切的关系。计算结果表明,在辐散风动能与旋转风动能的转换函数{KD,KR)中,B项(代表垂直运动与旋转风动能的垂直变化的耦合)是最大的转换项;在强对流区,反映涡管伸缩机制的A项也是一个很重要的转换项。就区域时间平均而言,有旋转风动能向辐散风动能(KR→KD)转换。   相似文献   

14.
冬季一次引发华北暴雪的低涡涡度分析   总被引:5,自引:0,他引:5  
利用NCEP FNL 1°×1°再分析资料和WRF模式,模拟了2010年1月2~3日我国华北地区的一次由涡旋造成的冬季降雪过程,并采用位涡和涡度方程对引发暴雪的涡旋发展机制进行了诊断分析。结果表明,这次降雪过程中,对流层中层高空浅槽东移、加深及发展,并引导低空和地面系统自西向东移动,高空位涡的下传强迫加强了对流层中低层涡旋的发展。平均通量和涡旋区域的辐合、辐散作用对涡旋涡度的增长贡献最大,扰动通量和类倾斜项的作用较小。在中层涡旋成熟期,环境场的风速小于中层涡旋的移动速度时,环境场相对于涡旋区域为辐散,涡旋涡度减小;当环境场风速大于涡旋的移动速度时,环境场相对于涡旋区域为辐合,涡旋涡度增加。在涡旋衰减期,向涡旋外输送的绝对涡度通量使得涡旋涡度逐渐减弱。这次过程中,高空位涡强迫、低空辐合和涡旋边界平均气流对扰动涡度的输送是涡旋发展的主要机制。  相似文献   

15.
应用自动站雨量资料、常规观测资料和国家气象中心T213分析场资料,采用PSU/NCAR的高分辨率中尺度非静力数值模式MM5,模拟了2008年7月20日高原低涡东移引发的四川盆地暴雨过程。通过分析模式输出资料,结果得出高原涡东移影响四川盆地暴雨的一种物理触发机制:高原涡正涡度的东移促使四川盆地正涡度发展,正涡度的发展使得大气旋转上升加强,对流层高层强烈辐散,低层辐合,对流发展形成降水,大气凝结释放潜热加热大气,使得高层等压面升高,负涡度发展,低层降压,正涡度发展,这样就形成了一个正反馈的循环机制,从而导致了四川盆地强降水。   相似文献   

16.
利用中尺度WRF模式对2008年6月30日—7月1日生成于川东南地区的一个西南低涡的发生发展过程进行了数值模拟研究。模拟结果显示低涡首先出现在850 h Pa上,几个小时后700h Pa上才有低涡生成,850 h Pa低涡的形成与西南低空急流有着密切的联系。通过ω方程的诊断分析表明,涡度的水平平流项和辐散项对850 h Pa低涡的形成起主要作用,而潜热释放对850 h Pa低涡的形成作用不大;潜热加热是700 h Pa气流不断辐合从而形成低涡的主要因子。干敏感性试验研究进一步证实了潜热释放对850 h Pa低涡的影响不明显,但是会导致700 h Pa上气旋性的切变加强辐合从而形成低涡。  相似文献   

17.
2006年超强台风“桑美”强度突变的动能特征分析   总被引:5,自引:0,他引:5  
应用NCEP/NCAR再分析资料,对2006年超强台风“桑美”(Saomai)强度突变过程的动能特征进行分析,结果表明:“桑美”突然增强时刻其低层总动能和旋转风动能突然增加,辐散风动能也有所增加,总动能的增加主要是由旋转风动能增加所引起的;其高层总动能和旋转风动能突然减小,而辐散风动能突然增加,高层动能下传是导致“桑美”突然增强的重要原因;“桑美”突然增强时刻高层辐散风动能向旋转风动能的转换达到最大,低层辐散风与旋转风相互作用动能项达到最大;“桑美”突然减弱时刻的高低层能量变化趋势与突然增强时刻相反,并存在着低层动能的上传;“桑美”强度突变时对总动能(K)、旋转风动能(KR)、辐散风动能(KD)变化的响应时间为6~18 h。  相似文献   

18.
高原涡诱生西南涡特大暴雨成因的个例研究   总被引:25,自引:6,他引:19       下载免费PDF全文
赵玉春  王叶红 《高原气象》2010,29(4):819-831
利用多途径探测与再分析资料,通过诊断分析、数值模拟和敏感性试验,对2008年7月20~21日一次高原涡东移诱生西南涡并引发川中特大暴雨的天气过程进行了初步分析,探讨了西南涡特大暴雨发生的中尺度环境场特征,特殊地形和非绝热物理过程在高原涡东移诱生西南涡特大暴雨中的作用。结果表明,高原涡形成后沿高原东北侧下滑,在四川盆地诱生出西南涡,川中特大暴雨在西南涡形成过程中由强中尺度对流系统(MCSs)的活动造成。高原涡东移诱生的低层偏东气流在川西高原东侧地形的动力强迫抬升作用下,释放对流有效位能激发出MCSs产生强降水,降水凝结潜热加热反馈驱动西南涡快速发展。地形的动力作用仅能形成浅薄的西南涡,降水凝结潜热的加入才能使西南涡充分发展。高原涡的发展主要受地面热通量影响,它的发展与否在很大程度上决定西南涡能否形成。盆地周边高大山脉对西南涡的位置分别有不同程度的影响,而盆地周边高大山脉上叠加的中小尺度地形对西南涡和暴雨带的整体位置影响不大,在一定程度上影响暴雨的落区。  相似文献   

19.
针对2020年8月11—12日四川盆地西部特大暴雨过程中尺度系统演变特征和维持机制,利用欧洲中心ERA5逐小时再分析资料以及FY-4A的云顶相当黑体温度TBB资料进行诊断分析。(1)本次过程发生在500 hPa巴湖长波槽分裂短波和高原低槽东移发展在四川盆地停滞,副高加强西伸形成阻挡的形势下,同时200 hPa有南亚高压和高空分流区配合。(2)在上述有利的背景条件下,中尺度系统活动经历了中尺度辐合扰动-西南涡生成发展-低空急流影响-西南涡再次发展增强等4个阶段,西南涡两个阶段的发展对降水影响最大,初生发展阶段雨强最强,再次发展阶段强降雨范围最大。(3)西南涡在暖区内初生发展,对流不稳定性强,地面潜热和感热加热以及500 hPa层以下水汽凝结潜热加热均十分显著,在较强暖湿平流作用下,配合低层涡度拉伸项和扭转项的动力作用加强,西南涡迅速发展,但低层辐合相对较弱,正涡度柱高度仅发展至500 hPa。(4)西南涡再次发展阶段冷平流入侵,大气斜压性增强,中高层感热和凝结潜热加热作用加大,“低层辐合-中高层辐散”的动力机制显著加强,配合垂直向上输送正涡度和涡度拉伸项的动力发展作用,西南涡发展旺盛,正...  相似文献   

20.
用1958-2003年NCEP/NCAR再分析资料,利用涡度源方程、Eliassen-Palm通量(EP通量)和非绝热效应的波能方程,分析了夏季沿西亚急流Rossby波活动(WAJRA)异常的波源、能量传播和转换特征,从大气动力学内部机制上进一步认识WAJRA异常的成因,提高对中高纬大气环流异常机理的理解.研究表明,对流层高层位于地中海和北大西洋-斯堪的纳维亚半岛的负涡度源区和EP通量强辐散区为夏季WAJRA异常的波源区.当波源区位置和强度出现异常时,波源所激发东传的Rossby波活动也出现异常,从而导致WAJRA强弱变化.WAJRA强(弱)年冰岛-斯堪的那维亚半岛(斯堪的那维亚半岛以东)EP通量强辐散区激发Rossby波并沿2条路径向东传播,一支向东传播在乌拉尔山附近转向东南并在里海、咸海-新疆上空进入亚洲副热带西风急流传播增强(减弱),另一支直接向东南方向传播在地中海东部-黑海附近进入亚洲西风急流增强(减弱),此外,地中海上空EP通量辐散也增强(减弱),它们共同作用使得WAJRA增强(减弱).沿西亚地区副热带西风急流(简称西亚急流,指亚洲副热带西风急流的15°-60°E部分)非绝热加热产生扰动有效位能远大于基本气流动能向扰动动能的转换和基本气流有效位能向扰动有效位能的转换.西亚急流Rossby波活动强年(弱年)伊朗高原及其北侧的西亚地区非绝热加热产生的有效位能增强(减弱)显著,是WAJRA增强(减弱)的能量源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号