首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc–Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources(input) and arc or back-arc magmas(output) in the Philippine Sea Plate–Ryukyu Arc–Okinawa Trough system(PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Okinawa Trough lavas: sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt(MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and subcontinental lithospheric mantle(SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the "seafloor spreading" process in the southwest segment, "rift propagation" process in the middle segment, and "crustal extension" process in the northeast segment, and a nascent ocean basin occurs in the southwest segment.  相似文献   

2.
The Okinawa marginal basin was opened by crustal extension into the Asian continent, north of the Taiwan collision zone. It is located behind the Ryukyu Trench subduction zone and the Ryukyu active volcanic arc. If we except the Andaman Sea, the Okinawa Trough is the only example of marginal backarc basin type, opened into a continent at an early stage of evolution. Active rifting and spreading can be observed. Synthesis of siesmic reflection, seismic refraction, drilling, dredging and geological field data has resulted in interpretative geological cross sections and a structural map of the Ryukyu-Okinawa area. The main conclusions of the reconstruction of this backarc basin/volcanic arc evolution are. (1) Backarc rifting was initiated in the volcanic arc and propagated along it during the Neogene. It is still active at both ends of the basin. Remnants of volcanic arc are found on the continental side of the basin. (2) There was synchronism between opening and subsidence of the Okinawa Trough and tilting and subsidence of the forearc terrace. The late Miocene erosional surface is now 4000 m below sea-level in the forearc terrace, above the trench slope. Retreat and subsidence of the Ryukyu trench line relative to the Asian continental plate, could be one of the causes of tilting of the forearc and extension in the backarc area. (3) A major phase of crustal spreading occurred in Pliocene times 1.9 My ago in the south and central Okinawa Trough. (4) En échelon rifting and spreading structures of the central axes of the Okinawa Trough are oblique to the general trend of the arc and trench. The Ryukyu arc sub-plate cannot be considered as a rigid plate. Rotation of 45° to 50° of the southern Ryukyu arc, since the late Miocene, is inferred. The timing and kinematic evolution of the Taiwan collision and the south Okinawa Trough opening suggest a connection between these two events. The indentation process due to the collision of the north Luzon Arc with the China margin could have provoked: lateral extrusion; clockwise rotation (45° to 50° according to palaeomagnetic data) and buckling of the south Ryukyu non-volcanic arc; tension in the weak crustal zone constituted by the south Ryukyu volcanic arc and opening of the south Okinawa Trough. Similar lateral extrusions, rotations, buckling and tensional gaps have been observed in indentation experiments. Additional phenomena such as: thermal convection, retreating trench model or anchored slab model could maintain extension in the backarc basin. Such a hypothetical collision-lateral backarc opening model could explain the initiation of opening of backarc basins such as the Mariana Trough, Bonin Trough, Parece Vela — Shikoku Basin and Sea of Japan. A new late Cenozoic palaeogeographic evolution model of the Philippine Sea plate and surrounding areas is proposed.  相似文献   

3.
Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous,and lower in High Field Strength Elements (HFSE).These rocks are higher in Large Ion Lithophile Elements (LILE),thorium and uranium contents,positive lead anomalies,negative Nb-Ta anomalies,and enrichment in Light Rare Earth Elements (LREE).Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB),and rhyolites from the northern Okinawa Trough have the highest 207 Pb/ 204 Pb and 208 Pb/ 204 Pb ratios.The NECS shelf margin basalts have lower 87 Sr/ 86 Sr ratios,ε N d and σ 18 O than the northern Okinawa Trough silicic rocks.According to 40 K– 40 Ar isotopic ages of basalts from the NECS shelf margin,rifting of the Okinawa Trough may have been active since at least 3.65–3.86 Ma.The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere.The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough,and the formation of basaltic magmas closely relates to the thinning of continental crust.The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough,which could have been generated by the interaction of basaltic melt with an enriched crustal component.From the Ryukyu island arc to East China,the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE),suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate,and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.  相似文献   

4.
冲绳海槽的形成与发展   总被引:1,自引:0,他引:1  
路应贤 《海洋学报》1981,3(4):589-600
冲绳海槽是位于东海大陆架外缘、东海陆架边缘隆褶带与琉球岛弧之间的一个狭长带状弧间盆地.关于它的成因,已有古琉球弧直接张裂和断裂下陷两种观点,而笔者认为,它是由于菲律宾海板块从早中新世末以来,向欧亚大陆板块下俯冲所形成的沟-弧-盆系列的一个组成部分,在其生成和发展过程中,先后经历了拗陷、断陷和扩张三个阶段.然而,扩张刚刚开始.今后它将进一步裂开,琉球弧将更加向菲律宾海方向推进.因受调查程度的限制,本文将以冲绳海槽北半部的资料为主要依据.  相似文献   

5.
东海及其邻域地球动力学研究进展   总被引:3,自引:0,他引:3  
分别对东海陆架盆地和冲绳槽盆地的地质概况,地壳结构、地热场分布及热水活动状况,地震层析成像及其它地球动力学研究做了综合分析,研究结果偏重于大陆地壳下的物质向边缘海方向扩张,形成边缘海和边缘洋盆的模式,从而取代多年来关于西北太平洋边缘海盆是由于海沟向欧亚大陆的俯冲产生的观点。  相似文献   

6.
Carbonate rock cores drilled on the Kikai Seamount, northern Philippine Sea are examined for better understanding of tectonic history of the northern Philippine Sea. The Kikai Seamount, the summit of which is at 1960 m water depth, is an isolated high on the northwestern part of the Amami Plateau formed by subduction-related arc volcanism, and is situated close to the axis of the Ryukyu Trench in front of the Ryukyu Arc, SW Japan. The seamount is capped with shallow-water carbonates such as coral rudstone. Detailed examinations of lithology, larger foraminiferal assemblages, and Sr isotope composition reveal that the core material comprises Miocene carbonates unconformably overlain by Early Pleistocene carbonates. It indicates rapid subsidence of the Kikai Seamount since the Early Pleistocene. The most probable cause of rapid subsidence is collision and subduction of the Amami Plateau laden with the Kikai Seamount. The rapid subsidence may have started when the western corner of the plateau reached the Ryukyu Trench and began subduction beneath the Ryukyu Arc. The onset of the subsidence is likely to be controlled by a motion change in the Philippine Sea Plate. The latest change in subduction direction from north to northwestward into northwestward to west has been believed to have occurred at 1-2 Ma during latest Pliocene to Early Pleistocene time. The change of direction resulted in the shift from oblique into right-angle subduction of the plate beneath the Ryukyu Arc and also the onset of the collision and subduction of the Amami Plateau.  相似文献   

7.
The Gagua Ridge, carried by the Philippine Sea Plate, is subducting obliquely beneath the southernmost Ryukyu Margin. Bathymetric swath-mapping, performed during the ACT survey (Active Collision in Taiwan), indicates that, due to the high obliquity of plate convergence, slip partitioning occurs within the Ryukyu accretionary wedge. A transcurrent fault, trending N95° E, is observed at the rear of the accretionary wedge. Evidence of right lateral motion along this shear zone, called the Yaeyama Fault, suggests that it accommodates part of the lateral component of the oblique convergence. The subduction of the ridge disturbs this tectonic setting and significantly deforms the Ryukyu Margin. The ridge strongly indents the front of the accretionary wedge and uplifts part of the forearc basin. In the frontal part of the margin, directly in the axis of the ridge, localized transpressive and transtensional structures can be observed superimposed on the uplifted accretionary complex. As shown by sandbox experiments, these N330° E to N30° E trending fractures result from the increasing compressional stress induced by the subduction of the ridge. Analog experiments have also shown that the reentrant associated with oblique ridge subduction exhibits a specific shape that can be correlated with the relative plate motion azimuth.These data, together with the study of the margin deformation, the uplift of the forearc basin and geodetic data, show that the subduction of the Gagua Ridge beneath the accretionary wedge occurs along an azimuth which is about 20° less oblique than the convergence between the PSP and the Ryukyu Arc. Taking into account the opening of the Okinawa backarc basin and partitioning at the rear of the accretionary wedge, convergence between the ridge and the overriding accretionary wedge appears to be close to N345° E and thus, occurs at a rate close to 9 cm yr–1. As a result, we estimate that a motion of 3.7 cm yr–1±0.7 cm should be absorbed along the transcurrent fault. Based on these assumptions, the plate tectonic reconstruction reveals that the subducted segment of the Gagua Ridge, associated with the observable margin deformations, could have started subducting less than 1 m.y. ago.  相似文献   

8.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60 m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

9.
东海地区地热场综述   总被引:1,自引:0,他引:1  
综述了东海地区地热场的特征及研究进展,根据收集的各航次热流值资料,绘制了东海地区的热流值分布图,并根据热流值的分布特点将东海地区分为陆架区、冲绳海槽区、琉球岛弧和海沟区、菲律宾海盆区等4个区块,详细分析了它们的热流分布成因,在已有的东海南北热结构模型基础上对东海南北热结构差异进行了分析。南冲绳海槽区的地壳热流值和地壳减薄程度都明显高于北冲绳海槽及其它各区,说明高热流值起源于地幔抬升和地壳的减薄,东海的扩张已经从冲绳海槽北部转移到南部。  相似文献   

10.
This paper presents actuality of investigation and study of the crustal structure characters of East China Sea at home and abroad. Based on lots of investigation and study achievements and the difference of the crustal velocity structure from west to east, the East China Sea is divided into three parts - East China Sea shelf zone, Okinawa Trough zone and Ryukyu arc-trench zone. The East China Sea shelf zone mostly has three velocity layers, i.e., the sediment blanket layer (the velocity is 5.8-5.9 km/s), the basement layer (the velocity is 6.0-6.3 km/s), and the lower crustal layer (the velocity is 6.8-7.6 km/s). So the East China Sea shelf zone belongs to the typical continental crust. The Okinawa Trough zone is located at the transitional belt between the continental crust and the oceanic crust. It still has the structural characters of the continental crust, and no formation of the oceanic crust, but the crust of the central trough has become to thinning down. The Ryukyu arc-trench zone belongs to the transitional type crust as a whole, but the ocean side of the trench already belongs to the oceanic crust. And the northwest Philippine Basin to the east of the Ryukyu Trench absolutely belongs to the typical oceanic crust.  相似文献   

11.
中国东部海域及周边地壳热流初探   总被引:1,自引:0,他引:1  
本文根据在117°~135°E,21°50′~41°30′N范围内的500多个热流值,对中国东部海域及周边的热流分布特征及其与地质构造的关系进行了讨论。热流分析表明,冲绳海槽具有极高的热流值,为一现在正在活动的弧后张裂带。  相似文献   

12.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60?m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

13.
As an active back-arc basin, the Okinawa Trough is located in the southeastern region of the East China Sea shelf and is strongly influenced by the subduction of the Philippine Sea Plate. Major element, trace element and Sr-NdPb isotopic composition data are presented for volcanic rocks from the Iheya Ridge(IR), the middle Okinawa Trough. The IR rocks record large variations in major elements and range from basalts to rhyolites. Similar trace element distribution characteristics together with small variations in ~(87)Sr/~(86)Sr(0.703 862–0.704 884), ~(144)Nd/~(143)Nd(0.512 763–0.512 880) and Pb isotopic ratios, demonstrate that the IR rocks are derived from a similar magma source. The fractional crystallization of olivine, clinopyroxene, plagioclase, and amphibole, as well as accessory minerals, can reasonably explain the compositional variations of these IR rocks. The simulations suggest that approximately 60% and 75% fractionation of an evolved basaltic magma can produce trace element compositions similar to those of the intermediate rocks and acid rocks, respectively. The analysis of their Sr-Nd-Pb isotopic content ratios suggest that the source of the rocks from the IR is close to the depleted mantle(DM) but extends to the enriched mantle(EMII), indicating that the mantle source of these rocks is a mixture between the DM and EMII end members. The simulations show that the source of the IR volcanic rocks can be best interpreted as the result of the mixing of approximately 0.8%–2.0% subduction sediment components and 98.0%–99.2% mantlederived melts.  相似文献   

14.
东海陆架盆地南部中生代构造演化与原型盆地性质   总被引:10,自引:0,他引:10  
东海陆架盆地南部夹持于欧亚板块、太平洋板块与印度板块之间,是发育在前中生代基础之上的中、新生代叠合盆地。其构造演化受古太平洋板块俯冲及特提斯-喜马拉雅构造域的联合影响,经历了印支末期基隆运动、燕山期渔山和雁荡运动的叠加改造。结合浙闽隆起带中生代火成岩事件、盆地构造变形、沉积学的一些证据,通过海陆对比研究,认为东海陆架盆地南部早-中三叠世可能为面向古太平洋的被动大陆边缘盆地;晚三叠世-侏罗纪古太平洋板块已对中国大陆有较强的俯冲作用,东海陆架盆地及南部原型盆地为活动大陆边缘弧前盆地;白垩纪受控于滨海断裂表现为活动大陆边缘走滑拉分盆地;古新世-始新世火山岛弧向东移动,东海陆架变为弧后裂谷盆地。  相似文献   

15.
板块构造学说问世以来,引起了许多海洋地质、地球物理学家的重视,并从各个不同角度,对板块运动机制进行了深入的研究.近年来,许多学者都将注意力转移到板块聚合边界的运动学和动力学研究上,在1979年2月东京召开的西太平洋研讨会[1]及1980年3月召开的西北太平洋地质、地球物理研讨会[2]上,都将对西太平洋沟、弧、盆系列的调查研究列为最重要的课题.  相似文献   

16.
台湾岛及其邻域地层和构造特征   总被引:1,自引:0,他引:1  
台湾碰撞造山带作为世界上最年青的造山带之一,具有其独特的地质环境。它位于菲律宾海板块和亚欧板块的交汇处,东北面为东北-近东西走向的琉球沟-弧-盆系,东侧为西北向运动的菲律宾海板块,向南为近南北走向的吕宋岛弧,并与冲绳海槽和马尼拉海沟的形成演化密切相关,从而造就了众多形态复杂、成因各异的区域地层和构造现象。台湾岛自东向西可划分为海岸山脉带、台东纵谷、中央山脉、西部山麓带和沿海平原带五个构造-沉积单元。以台东纵谷为界,两侧在地形地貌、地层组成、岩石性质、重力、磁力等地质地球物理特征上均表现为明显不同,分别隶属于不同的板块构造单元,西侧属于欧亚板块的中国大陆边缘,东侧的海岸山脉带则是北吕宋火山岛弧的向北延伸。  相似文献   

17.
冲绳海槽现代张裂的地球物理特征   总被引:3,自引:0,他引:3  
位于东海陆架与琉球岛弧之间的冲绳海槽为板块俯冲作用形成的弧后断陷盆地,具有独特的构造地貌特征。自中新世末以来历经了4个强烈拉张的演化时期,目前已达到张裂的高级阶段。地球物理资料显示,海槽中的现代拉张作用仍在进行,表现在海槽轴部快速沉降形成地堑槽,对称分布的张性断裂,晚更新世—全新世以来的岩浆活动,从老至新排列的磁异常务带以及高地热流、频繁的地震活动等,充分体现了冲绳海槽的现代扩张特点。  相似文献   

18.
The formation and tectonic evolution of Philippine Sea Plate and KPR   总被引:5,自引:0,他引:5  
The Philippine Sea Plate has an extremely special tectonic background. As an oceanic plate, it is almost entirely surrounded by subduction zones with complex internal tectonic features. On the basis of enormous published literature, this paper offers a comprehensive overview of the tectonic and evolution history of the Philippine Basin and the Kyushu-Palau Ridge (KPR) in the Philippine Sea Plate, and discusses the geological features of KPR. Referring to relevant definitions of various "ridges" stipulated in United Nations Convention on the Law of the Sea, so the KPR is believed to be a remnant arc formed during the opening of the Parece Vela and Shikoku Basins in the Philippine Sea Plate. It is a submarine ridge on oceanic plate rather than a submarine elevation. And thus, it is not a natural component of the Japan continental margin.  相似文献   

19.
我国东部海区及邻域1:1 000 000地质地球物理系列图将于2008年底出版,区域构造图是其中的主要专业图件之一。讨论了该专业图件的编图方法、地质构造单元的划分方法和主要地质构造单元。首次对黄海东海区进行了全面剥皮编图,剥去了Q+N2地层。对于沉积盆地用等厚度线表示出了新生界的厚度。地质构造单元划分方法是以板块构造理论为指导并以现今的构造特征为主要划分依据。板块内构造单元的划分是在总结国内外多种构造单元划分方法的基础上进行了修改完善,完成了对我国东部海区及邻域的地质构造单元的划分。区内一级构造单元为板块(太平洋板块、欧亚板块和菲律宾海板块),二级构造单元为构造域(东亚大陆构造域、东亚大陆边缘构造域和西太平洋构造域)。西太平洋构造域主要包括太平洋板块的西部及菲律宾海板块。欧亚板块在该区的部分可分为东亚大陆边缘构造域和东亚大陆构造域。东亚大陆边缘构造域由日本琉球岛弧、冲绳海槽弧后盆地、日本海弧后盆地等次级构造单元构成。东亚大陆构造域在该区内由中朝地块、扬子地块、华南地块等次级构造单元构成。各地块又可划分出盆地、隆褶带、隆起区等多个次一级地质构造单元。最低一级的地质构造单元为凸起和凹陷。  相似文献   

20.
Morphology and tectonics of the Yap Trench   总被引:5,自引:0,他引:5  
We conducted swath bathymetry and gravity surveys the whole-length of the Yap Trench, lying on the southeastern boundary of the Philippine Sea Plate. These surveys provided a detailed morphology and substantial insight into the tectonics of this area subsequent the Caroline Ridge colliding with this trench. Horst and graben structures and other indications of normal faulting were observed in the sea-ward trench seafloor, suggesting bending of the subducting oceanic plate. Major two slope breaks were commonly observed in the arc-ward trench slope. The origin of these slope breaks is thought to be thrust faults and lithological boundaries. No flat lying layered sediments were found in the trench axis. These morphological characteristics suggest that the trench is tectonically active and that subduction is presently occurring. Negative peaks of Bouguer anomalies were observed over the arc-ward trench slope. This indicates that the crust is thickest beneath the arc-ward trench slope because the crustal layers on the convergent two plates overlap. Bouguer gravity anomalies over the northern portion of the Yap Arc are positive. These gravity signals show that the Yap Arc is uplifted by dynamic force, even though dense crustal layers underlie the arc. This overlying high density arc possibly forces the trench to have great water depths of nearly 9000 m. We propose a tectonic evolution of the trench. Subduction along the Yap Trench has continued with very slow rates of convergence, although the cessation of volcanism at the Yap Arc was contemporaneous with collision of the Caroline Ridge. The Yap Trench migrated westward with respect to the Philippine Sea Plate after collision, then consumption of the volcanic arc crust occurred, caused by tectonic erosion, and the distance between the arc and the trench consequently narrowed. Lower crustal sections of the Philippine Sea Plate were exposed on the arc-ward trench slope by overthrusting. Intense shearing caused deformation of the accumulated rocks, resulting in their metamorphism in the Yap Arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号