首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
We have developed a simple semblance-weighted stacking technique to estimate crustal thickness and average VP/VS ratio using teleseismic receiver functions. We have applied our method to data from 32 broadband seismograph stations that cover a 700 × 400 km2 region of the Grenville orogen, a 1.2–0.98 Ga Himalayan-scale collisional belt in eastern North America. Our seismograph network partly overlaps with Lithoprobe and other crustal refraction surveys. In 8 out of 9 cases where a crustal-refraction profile passes within 30 km of a seismograph station, the two independent crustal thickness estimates agree to within 7%. Our regional crustal-thickness model, constructed using both teleseismic and refraction observations, ranges between 34.0 and 52.4 km. Crustal-thickness trends show a strong correlation with geological belts, but do not correlate with surface topography and are far in excess of relief required to maintain local isostatic equilibrium. The thickest crust (52.4 ± 1.7 km) was found at a station located within the 1.1 Ga mid-continent (failed) rift. The Central Gneiss Belt, which contains rocks exhumed from deep levels of the crust, is characterized by VP/VS ranging from 1.78 to 1.85. In other parts of the Grenville orogen, VP/VS is found to be generally less than 1.80. The thinnest crust (34.5–37.0 km) occurs northeast of the 0.7 Ga Ottawa–Bonnechere graben and correlates with areas of high intraplate seismicity.  相似文献   

2.
A total of 13 regional Ocean Bottom Seismograph (OBS) profiles with an accumulated length of 2207 km acquired on the Vøring Margin, NE Atlantic have been travel time modelled with regards to S-waves. The Vp/Vs ratios are found to decrease with depth through the Tertiary layers, which is attributed to increased compaction and consolidation of the rocks. The Vp/Vs ratio in the intra-Campanian to mid-Campanian layer (1.75–1.8) in the central Vøring Basin is significantly lower than for the layers above and beneath, suggesting higher sand/shale ratio. This layer was confirmed by drilling to represent a layer of sandstone. This mid-Cretaceous ‘anomaly’ is also present in the northern Vøring Basin, as well as on the southern Lofoten Margin further north. The Vp/Vs ratio in the extrusive rocks on the Vøring Plateau is estimated to be 1.85, conformable with mafic (basaltic) rocks. Landward of the continent/ocean transition (COT), the Vp/Vs ratio in the layer beneath the volcanics is estimated to be 1.67–1.75. These low values suggest that this layer represents sedimentary rocks, and that the sand/shale ratio might be relatively high here. The Vp/Vs ratio in the crystalline basement is estimated to be 1.67–1.75 in the basin and on the landward part of the Vøring Plateau, indicating the presence of granitic/granodioritic continental crust. In the lower crust, the Vp/Vs ratio in the basin decreases uniformly from southwest to northeast, from 1.85–1.9 to 1.68–1.73, suggesting a gradual change from mafic (gabbroic) to felsic (granodioritic) lower crust. Significant (3–5%) azimuthal S-wave anisotropy is observed for several sedimentary layers, as well as in the lower crust. All these observations can be explained by invoking the presence of liquid-filled microcracks aligned vertically along the direction of the present day maximum compressive stress (NW–SE).  相似文献   

3.
A 3-D density model for the Cretan and Libyan Seas and Crete was developed by gravity modelling constrained by five 2-D seismic lines. Velocity values of these cross-sections were used to obtain the initial densities using the Nafe–Drake and Birch empirical functions for the sediments, the crust and the upper mantle. The crust outside the Cretan Arc is 18 to 24 km thick, including 10 to 14 km thick sediments. The crust below central Crete at its thickest section, has values between 32 and 34 km, consisting of continental crust of the Aegean microplate, which is thickened by the subducted oceanic plate below the Cretan Arc. The oceanic lithosphere is decoupled from the continental along a NW–SE striking front between eastern Crete and the Island of Kythera south of Peloponnese. It plunges steeply below the southern Aegean Sea and is probably associated with the present volcanic activity of the southern Aegean Sea in agreement with published seismological observations of intermediate seismicity. Low density and velocity upper mantle below the Cretan Sea with ρ  3.25 × 103 kg/m3 and Vp velocity of compressional waves around 7.7 km/s, which are also in agreement with observed high heat flow density values, point out at the mobilization of the upper mantle material here. Outside the Hellenic Arc the upper mantle density and velocity are ρ ≥ 3.32 × 103 kg/m3 and Vp = 8.0 km/s, respectively. The crust below the Cretan Sea is thin continental of 15 to 20 km thickness, including 3 to 4 km of sediments. Thick accumulations of sediments, located to the SSW and SSE of Crete, are separated by a block of continental crust extended for more than 100 km south of Central Crete. These deep sedimentary basins are located on the oceanic crust backstopped by the continental crust of the Aegean microplate. The stretched continental margin of Africa, north of Cyrenaica, and the abruptly terminated continental Aegean microplate south of Crete are separated by oceanic lithosphere of only 60 to 80 km width at their closest proximity. To the east and west, the areas are floored by oceanic lithosphere, which rapidly widens towards the Herodotus Abyssal plain and the deep Ionian Basin of the central Mediterranean Sea. Crustal shortening between the continental margins of the Aegean microplate and Cyrenaica of North Africa influence the deformation of the sediments of the Mediterranean Ridge that has been divided in an internal and external zone. The continental margin of Cyrenaica extends for more than 80 km to the north of the African coast in form of a huge ramp, while that of the Aegean microplate is abruptly truncated by very steep fractures towards the Mediterranean Ridge. Changes in the deformation style of the sediments express differences of the tectonic processes that control them. That is, subduction to the northeast and crustal subsidence to the south of Crete. Strike-slip movement between Crete and Libya is required by seismological observations.  相似文献   

4.
The evolution of oceanic crust on the Kolbeinsey Ridge, north of Iceland, is discussed on the basis of a crustal transect obtained by seismic experiment from the Kolbeinsey Ridge to the Jan Mayen Basin. The crustal model indicates a relatively uniform structure; no significant lateral velocity variations are observed, especially in the lower crust. The uniform velocity structure suggests that the postulated extinct axis does not exist over the oceanic crust formed at the Kolbeinsey Ridge, but supports a model of continuous spreading along the ridge after oceanic spreading started west of the Jan Mayen Basin. The oceanic crust formed at Kolbeinsey Ridge is 1–2.5 km thicker than normal oceanic crust due to hotter-than-normal mantle from the Iceland Mantle Plume. The observed generally uniform thickness throughout the transect might also indicate that the temperatures of the astheno-spheric mantle ascending along the Kolbeinsey Ridge have not changed significantly since the age of magnetic anomaly 6B.  相似文献   

5.
The large-scale seismic refraction and wide-angle reflection experiment POLONAISE'97 together with LT-7 and TTZ profiles carried out with the most modern techniques gave a high resolution of crustal structure of the Trans-European Suture Zone (TESZ) in NW and central Poland. The results of seismic investigations show the presence of relatively low velocity rocks (Vp < 6.1 km/s) down to a depth of 20 km beneath the Polish Basin (PB), and a high velocity lower crust (Vp = 6.8–7.3 km/s). The crustal thickness in the TESZ is intermediate between that of the East European Craton (EEC) to the northeast (40–45 km) and that of the Variscan crust (VB) to the southwest ( 30 km). Velocities in the uppermost mantle are relatively high (Vp = 8.25–8.45 km/s). The crust is three-layered with substantial differences in the velocities and thickness of individual layers. The area of the TESZ in NW and central Poland can be divided into at least two crustal blocks (terranes), called here Pomeranian Unit (PU, in the northwest) and Kuiavian Unit (KU, in the southeast). The postulated boundary between KU and PU is rather sharp at particular levels of the crust. Velocity distribution in the middle and lower crystalline crust in the TESZ area resemble values recognized in the EEC area, the fundamental difference being the much smaller thickness of both these layers. Our hypothesis/speculation is that the attenuated lower and middle crust of the TESZ belong to proximal terranes built of the EEC crust detached in the southeast and re-accreted to the EEC due to the process of anti-clockwise rotation of the Baltica paleocontinent during the Ordovician–Early Silurian.  相似文献   

6.
The main aim of the TOR project is to study the lithospheric–asthenospheric boundary structure under the Sorgenfrei–Tornquist Zone, across northern Germany, Denmark and southern Sweden. Relative arrival-time residuals of teleseismic P and S phases from 51 earthquakes, recorded by 150 seismic stations along the TOR array, were used to delineate the transition zone in the studied area. The effects of crustal structures were investigated by correcting the teleseismic residuals for travel-time variations in the crust based on a 3D crustal model derived from other data. The inversion was carried out for S phases. The results were then compared with the corresponding P-wave models. As expected, the derived models show that the relatively old and cold Baltic Shield has higher velocity at depth than the younger lithosphere farther South. The models show two sharp and distinct increases in depth to velocities which are low compared to our reference model, as we move from South to North. The location and sharpness of these boundaries suggests that the features resolved are, at least partially, compositional in origin, presumably related to mantle depletion. A sharp and steep subcrustal boundary is found roughly coincident with the southern edge of Sweden. This is below where the edge of the Baltic Shield is usually placed, based on surface geological evidence (the Sorgenfrei–Tornquist Zone). Another less significant transition is recognised more or less beneath the Elbe-lineament. Relatively high d(Vp / Vs) ratios under the central part of the profile (Denmark) indicate relatively low S-velocity in an area where a gravity high supports the hypothesis of extensive mafic intrusions.  相似文献   

7.
The upper-mantle source regions of basaltic magmas in oceanic regions contain both H2O and CO2. If the water content of the upper-mantle peridotite is (<0.4%) approx., then its solidus has a distinctive P,T character such that the geotherm for older oceanic regions will enter a zone of incipient (<2%) melting — the low-velocity zone (LVZ) — at depths of 85–95 km. This LVZ is overlain by a lithosphere of subsolidus amphibole-bearing peridotite in which there is a density increase at ~55 km due to the first appearance of garnet. An alternative model in which the LVZ is attributed to the presence of CO2 fluid phase bubbles is incompatible with experimental data showing high solubility of CO2 in basaltic magmas at the P,T conditions of the LVZ. The LVZ contains a small melt fraction as an intergranular film (aspect ratio <10−2); this melt is of olivine melilitite (CO2, H2O present) or olivine nephelinite (H2O only present) character and is interstitial to olivine > orthopyroxene > garnet > clinopyroxene mineralogy. Temperatures at the top of the LVZ are in the range 1000–1150°C. The lithosphere thickens with age and distance from the mid-oceanic ridges, reaching a stable configuration at a thickness of 85–95 km for t > 80 m.y. With increasing age of the oceanic crust, the velocities in the lithosphere increase, the LVZ becomes thinner, and the velocity contrast between the lithosphere and the LVZ decreases. The pyrolite petrological model and its velocity profile satisfactorily account for most of the geophysical data for various age provinces in oceanic regions.  相似文献   

8.
High-resolution shipboard geophysical investigations along the Indian Ocean ridge system are sparse especially over the Carlsberg and Central Indian ridges. In the present study, the shipboard gravity and multibeam bathymetry data acquired over a 750 km long section of the Central Indian Ridge between 3 °S and 11 °S have been analysed to understand the crustal structure and the ridge segmentation pattern. The mantle Bouguer anomalies (MBA) and the residual mantle Bouguer anomalies (RMBA) computed in the study area have shown significant variations along the ridge segments that are separated by transform and non-transform discontinuities. The MBA lows observed over the linear ridge segments bounded by well-defined transform faults are attributed to the thickening of the crust at the middle portions of the ridge segments. The estimates of crustal thickness from the RMBA shows an average of 5.2 km thick crust in the axial part of the ridge segments. The MBA and relative RMBA highs along the two non-transform discontinuities suggests a thinner crust of up to 4.0 km. The most significant MBA and RMBA highs were observed over the Vema transform fault suggesting thin crust of 4 km in the deepest part of the transform fault where bathymetry is more than 6000 m. The identified megamullion structures have relative MBA highs suggesting thinner crust. Besides MBA lows along the ridge axis, significant off-axis MBA lows have been noticed, suggesting off-axis mantle upwelling zones indicative of thickening of the crust. The rift valley morphology varies from the typical V-shaped valley to the shallow valley floor with undulations on the inner valley floor. Segments with shallow rift valley floor have depicted well-defined circular MBA lows with persistent RMBA low, suggesting modulation of the valley floor morphology due to the variations in crustal thickness and the mantle temperature. These are supported by thicker crust and weaker lithospheric mantle.  相似文献   

9.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   

10.
Seismic refraction surveys conducted in 1976 and 1979 over the broken ice surface of the Arctic Ocean, reveal distinctly different crustal structures for the Fram, Makarov and Canada basins. The Canada Basin, characterized by a 2–4 km thick sedimentary layer and a distinct oceanic layer 3B of 7.5 km/s velocity has the thickest crust and is undoubtedly the oldest of the three. The crust of the Makarov Basin has a thin sedimentary layer of less than 1 km and is about 9 km in total thickness. The Fram Basin has a similarly thin sedimentary layer but is 3–4 km thicker than the Makarov as it approaches the Lomonosov Ridge near the North Pole. The ridge itself is cored by material with a velocity of 6.6 km/s and may be a metagabbro similar to oceanic layer 3A. This ridge root material extends to a depth of about 27 km, where a change occurs to upper-mantle material with a velocity of 8.3 km/s. The core is overlain by up to 6 km of material with a velocity of about 4.7 km/s which could be oceanic layer 2A basalts or continental crystalline rocks with some sedimentary material.The Fram Basin probably began to open contemporaneously with the North Atlantic about 70 m.y. ago, by spreading along the Nansen-Gakkel Ridge. Although not yet dated, the Makarov Basin is probably no older than the initiation of the Fram Basin and may be much younger. The Alpha Ridge may once have been part of the Lomonosov Ridge, splitting off to form the Makarov Basin between 70 and 25 m.y. ago and possibly contributing to the Eurekan Orogeny of 25 m.y. ago, evident on Ellesmere Island. In contrast, the likely age of the Canada Basin lies in the 125–190 m.y. range and may have been formed by the counter-clockwise rotation of Alaska and the Northwind Ridge away from the Canadian Arctic Islands. The Lomonosov Ridge emerges from this scenario as a block resulting from a strike-slip shear zone on the European continental shelf, related to the opening of the Canada basin (180-120 my) and then becomes an entity broken from this shelf by the opening of the Eurasia Basin (70-0 m.y.).  相似文献   

11.
Vp and Vs values have been measured experimentally and calculated for granulite-facies lower crustal xenoliths from central Ireland close to the Caledonian Iapetus suture zone. The xenoliths are predominantly foliated and lineated metapelitic (garnet–sillimanite–K-feldspar) granulites. Their metapelitic composition is unusual compared with the mostly mafic composition of lower crustal xenoliths world-wide. Based on thermobarometry, the metapelitic xenoliths were entrained from depths of c. 20–25 ± 3.5 km and rare mafic granulites from depths of 31–33 ± 3.4 km. The xenoliths were emplaced during Lower Carboniferous volcanism and are considered to represent samples of the present day lower crust.Vp values for the metapelitic granulites range between 6.26 and 7.99 km s− 1 with a mean value of 7.09 ± 0.4 km s− 1. Psammite and granitic orthogneiss samples have calculated Vp values of 6.51 and 6.23 km s− 1, respectively. Vs values for the metapelites are between 3.86 and 4.34 km s− 1, with a mean value of 4.1 ± 0.15 km s− 1. The psammite and orthogneiss have calculated Vs values of 3.95 and 3.97 km s− 1, respectively.The measured seismic velocities correlate with density and with modal mineralogy, especially the high content of sillimanite and garnet. Vp anisotropy is between 0.15% and 13.97%, and a clear compositional control is evident, mainly in relation to sillimanite abundance. Overall Vs anisotropy ranges from 1% to 11%. Poisson's ratio (σ) lies between 0.25 and 0.35 for the metapelitic granulites, mainly reflecting a high Vp value due to abundant sillimanite in the sample with the highest σ. Anisotropy is probably a function of deformation associated with the closure of the Iapetus ocean in the Silurian as well as later extension in the Devonian. The orientation of the bulk strain ellipsoid in the lower crust is difficult to constrain, but lineation is likely to be NE–SW, given the strike-slip nature of the late Caledonian and subsequent Acadian deformation.When corrected for present-day lower crustal temperature, the experimentally determined Vp values correspond well with velocities from the ICSSP, COOLE I and VARNET seismic refraction lines. Near the xenolith localities, the COOLE I line displays two lower crustal layers with in situ Vp values of 6.85–6.9 and 6.9–8.0 km s− 1, respectively. The upper (lower velocity) layer corresponds well with the metapelitic granulite xenoliths while the lower (higher velocity) layer matches that of the basic granulite xenoliths, though their metamorphic pressures suggest derivation from depths corresponding to the present-day upper mantle.  相似文献   

12.
Three-dimensional P and S wave velocity models of the crust under the Granada Basin in Southern Spain are obtained with a spatial resolution of 5 km in the horizontal direction and 2 to 4 km in depth. We used a total of 15407 P and 13704 S wave high-quality arrival times from 2889 local earthquakes recorded by both permanent seismic networks and portable stations deployed in the area. The computed P and S wave velocities were used to obtain three-dimensional distributions of Poisson's ratio (σ) and the porosity parameter (Vp×Vs). The 3-D velocity images show strong lateral heterogeneities in the region. Significant velocity variations up to ±7% in P and S velocities are revealed in the crust below the Granada Basin. At shallow depth, high-velocity anomalies are generally associated with Mesozoic basement, while the low-velocity anomalies are related to the neogene sedimentary rocks. The south–southeastern part of the Granada Basin exhibits high σ values in the shallowest layers, which may be associated with saturated and unconsolidated sediments. In the same area, Vp×Vs is high outside the basin, indicating low porosity of the mesozoic basement. A low-velocity zone at 18-km depth is found and interpreted as a weak–ductile crust transition that is related to the cut-off depth of the seismic activity. In the lower crust, at 34-km depth, a clear slow Vp and Vs anomalous zone may indicate variations in lithology and/or with the rigidity of the lower crust rocks.  相似文献   

13.
The large-scale CELEBRATION 2000 seismic experiment investigated the velocity structure of the crust and upper mantle between western portion of the East European Craton (EEC) and the eastern Alps. This area comprises: the Trans-European Suture Zone, the Carpathian Mountains, the Pannonian Basin and the Bohemian Massif. This experiment included 147 chemical shots recorded by 1230 seismic stations during two deployments. Good quality data along 16 main and a few additional profiles were recorded. One of them, profile CEL03, was located in southeastern Poland and was laid out as a prolongation of the TTZ profile performed in 1993. This paper focuses on the joint interpretation of seismic data along the NW–SE trending TTZ–CEL03 transect, located in the central portion of the Trans-European Suture Zone. First arrivals and later phases of waves reflected/refracted in the crust and upper mantle were interpreted using two-dimensional tomographic inversion and ray-tracing techniques. This modelling established a 2-D (quasi 3-D) P-wave velocity lithospheric model. Four crustal units were identified along the transect. From northwest to southeast, thickness of the crust varies from 35 km in the Pomeranian Unit (NW) to 40 km in the Kuiavian Unit, to 50 km in the Radom–Łysogóry Unit and again to 43 km in the Narol Unit (SE). The first two units are thought to be proximal terranes detached from the EEC farther to the southeast and re-accreted to the edge of the EEC during the Early Palaeozoic. The origin of the remaining two units is a matter of dispute: they are either portions of the EEC or other proximal terranes. In the area of the Polish Basin (first two units), the P-wave velocity is very low (Vp < 6.1 km/s) down to depths of 15–20 km indicating that a very thick sedimentary and possibly volcanic rock sequence, whose lower portion may be metamorphosed, is present. The velocity beneath the Moho was found to be rather high, being 8.25 km/s in the northwestern portion of the transect, 8.4 km/s in the central sector, and 8.1 km/s in the southeastern sector.  相似文献   

14.
One in-line wide-angle seismic profile was conducted in 1990 in the course of the Southeastern China Continental Dynamics project aimed at the study of the contact between the Cathaysia block and the Yangtze block. This 380-km-long profile extended in NW–SE direction from Tunxi, Anhui Province, to Wenzhou, Zhejiang Province. Five in-line shots were fired and recorded at seismic stations with spacing of about 3 km along the recording line. We have used two-dimensional ray tracing to model P- and S-wave arrivals and provide constraints on the velocity structure of the upper crust, middle crust, lower crust, Moho discontinuity, and the top part of the lithospheric mantle. P-wave velocity, S-wave velocity and VP/VS ratio are mapped. The crust is 36-km thick on average, albeit it gradually thins from the northwest end to the southeast end (offshore) of the profile. The average crustal velocity is 6.26 km/s for P-waves but 3.6 km/s for S-waves. A relatively narrow low-velocity layer of about 4 km of thickness, with P- and S-wave velocities of 6.2 km/s and 3.5 km/s, respectively, marks the bottom of the middle crust at a depth of 23-km northwest and 17-km southeast. At the crust–mantle transition, the P- and S-wave velocity change quickly from 7.4 to 7.8 km/s (northwest) and 8.0 to 8.2 km/s (southeast) and from 3.9 to 4.2 km/s (northwest) and 3.9 to 4.5 km/s (southeast), respectively. This result implies a lateral contrast in the upper mantle velocity along the 140 km sampled by the profile approximately. The average VP/VS ratio ranges from 1.68–1.8 for the upper crust to 1.75 for the middle and 1.75–1.85 for lower crust. With the interpretation of the wide-angle seismic data, Jiangshan–Shaoxin fault is considered as the boundary between the Yangtze and the Cathaysia block.  相似文献   

15.
Detailed seismic investigations of the continental crust have produced evidence of definite regularities in the general layering of the consolidated crust despite its high degree of inhomogeneity. Three main layers may be resolved in the inner part of a continent: an upper layer with velocities of 5.8–6.4 km/s and a velocity gradient about 0.04–0.05 s−1, an intermediate layer with velocities of 6.2–6.6 km/s and velocity gradient about zero, and a lower layer with velocities of 6.8–7.2 km/s and a high-velocity gradient of 0.05–0.1 s−1. The intermediate layer is characteristically different not only because of its low average velocity gradient, but also because of its more pronounced horizontal layering, inversion zones, and its higher “transparency” and Vp/Vs ratio. The gravity and magnetic data have shown that basement inhomogeneities disappear at the top of the intermediate layer. Also there are few earthquakes in this layer. These pecularities may be interpreted as the result of partial melting (weakening) of rocks and their possible horizontal mobility inside this layer.Thus, dynamic models of tectonic processes must take into consideration the possible existence of a weak zone in the crust.  相似文献   

16.
Recently, two diverse seismic techniques were applied independently to the study of the crustal structure of the Cumberland Plateau, eastern Tennessee. One involved a reinterpretation of a refraction experiment performed in 1965 by the U.S. Geological Survey, consisting of two 400 km long, reversed refraction lines. The other entailed the inversion of broadband teleseismic P waveforms recorded at a single three-component broadband station, RSCP, located at the intersection of the two refraction profiles. A comparison of the two sets of velocity profiles revealed many similarities and some significant differences. Both sets of velocity models consist of three major crustal layers: (1) an upper crust (Vp = 6.1–6.4 km/s) down to about 17 km, (2) a mid-crust (Vp = 6.7–6.9 km/s) between 17 and 40 km depth, (3) a lower crust (Vp = 7.2–7.4 km/s) from 40 to 51 km depth. The refraction models have linear transition zones up to 11 km thick at the base of each layer, whereas the teleseismic models have more irregular transition zones at the base of the mid- and lower crust. The differences in the results of these studies are attributed to the differing frequency bandwidths of the data sets; the predominant sensitivity of the teleseismic data to shear velocities, compared to compressional velocities for the refraction data; and the different analysis procedures involved in each method. Nevertheless, the similarities indicate that the teleseismic waveform method with broadband data is capable of retreiving comparable crustal information as the Cumberland Plateau refraction survey. In addition, it provides the kind of complementary information required to constrain the composition of the continental lower crust and uppermost mantle.  相似文献   

17.
We construct fine-scale 3D P- and S-wave velocity structures of the crust and upper mantle beneath the whole Japan Islands with a unified resolution, where the Pacific (PAC) and Philippine Sea (PHS) plates subduct beneath the Eurasian (EUR) plate. We can detect the low-velocity (low-V) oceanic crust of the PAC and PHS plates at their uppermost part beneath almost all the Japan Islands. The depth limit of the imaged oceanic crust varies with the regions. High-VP/VS zones are widely distributed in the lower crust especially beneath the volcanic front, and the high strain rate zones are located at the edge of the extremely high-VP/VS zone; however, VP/VS at the top of the mantle wedge is not so high. Beneath northern Japan, we can image the high-V subducting PAC plate using the tomographic method without any assumption of velocity discontinuities. We also imaged the heterogeneous structure in the PAC plate, such as the low-V zone considered as the old seamount or the highly seismic zone within the double seismic zone where the seismic fault ruptured by the earthquake connects the upper and lower layer of the double seismic zone. Beneath central Japan, thrust-type small repeating earthquakes occur at the boundary between the EUR and PHS plates and are located at the upper part of the low-V layer that is considered to be the oceanic crust of the PHS plate. In addition to the low-V oceanic crust, the subducting high-V PAC plate is clearly imaged to depths of approximately 250 km and the subducting high-V PHS zone to depths of approximately 180 km is considered to be the PHS plate. Beneath southwestern Japan, the iso-depth lines of the Moho discontinuity in the PHS plate derived by the receiver function method divide the upper low-V layer and lower high-V layer of our model at depths of 30–50 km. Beneath Kyushu, the steeply subducting PHS plate is clearly imaged to depths of approximately 250 km with high velocities. The high-VP/VS zone is considered as the lower crust of the EUR plate or the oceanic crust of the PHS plate at depths of 25–35 km and the partially serpentinized mantle wedge of the EUR plate at depths of 30–45 km beneath southwestern Japan. The deep low-frequency nonvolcanic tremors occur at all parts of the high-VP/VS zone—within the zone, the seaward side, and the landward side where the PHS plate encounters the mantle wedge of the EUR plate. We prove that we can objectively obtain the fine-scale 3D structure with simple constraints such as only 1D initial velocity model with no velocity discontinuity.  相似文献   

18.
Hundreds of samples and 17 variables collected from coalfields of major coal-bearing strata over China except for Tibet and Taiwan, were used in this study. The dry, ash-free basis volatile matter (V r) and caking index (G (RI)) were chosen by means of correlation analysis and stepwise discriminatory analysis as major indices of a new classification. By means of the optimum section, the boundary value of the axis of ordinate (G (RI)) and axis of abscissas (V r) can be determined in the classification system. Thus, aV rG (RI) classification scheme diagram was formed and bituminous coal was divided into nine classes. Use of correspondence analysis reduced dimensions of sample-expressive space without losing initial information. The trend on the factor surface of samples shows that the classification obtained from correspondence analysis conforms to theV rG (RI) classification result and further verified the dependability of classification by two indices. At the same time, a certain relationship between the properties of a great variety of coal and their attributes can be explained. Hence, bituminous coal classification becomes more scientific, reasonable, and practical than before.  相似文献   

19.
The southern segment of the seismic profile EUROBRIDGE—EUROBRIDGE-97 (EB'97)—located in Belarus and Ukraine, crosses the suture zone between two main segments of the East European Craton—Fennoscandia and Sarmatia—as well as Sarmatia itself. At the initial stage of our study, a 3-D density model has been constructed for the crust of the study region, including the major part of the Osnitsa–Mikashevichi Igneous Belt (OMIB) superimposed by sediments of the Pripyat Trough (PT), and three domains in the Ukrainian Shield—the Volhyn Domain (VD) with the anorthosite–rapakivi Korosten Pluton (KP), the Podolian Domain (PD), and the Ros–Tikich Domain (RTD). The model comprises three layers—sediments with maximum thickness (6 km) in the PT and two heterogeneous layers in the crystalline crust separated at a depth of 15 km. 3-D calculations show the main features of the observed gravity field are caused by density heterogeneities in the upper crust. Allocation of density domains deeper than 15 km is influenced by Moho topography. Fitting the densities here reveals an increase (up to 2960 kg m−3) in the modelled bodies accompanied by a Moho deepening to 50 km. In contrast, a Moho uplift to a level of 35–37 km below the KP and major part of the PT is associated with domains of reduced densities. An important role for the deep Odessa–Gomel tectonic zone, dividing the crust into two regions one of basically Archean consolidation in the west (PD and RTD) and one of Proterozoic crust in the east (Kirovograd Domain)—was confirmed.2-D density modelling on the EB'97 profile shows that in the upper crust three main domains of different Precambrian evolution—the OMIB (with the superimposed PT), the VD with the KP, and the PD—can be distinguished. Deeper, in the middle and lower crust, layered structures having no connection to the surface geology are dominant features of the models. Least thickness of the crust was obtained below the KP. Greatest crustal thickness (more than 50 km) was found below the PD, characterised also by maximum deviation of velocity/density relation in the rocks from a standard one. The velocity and density models along the EB'97 profile have been interpreted together with inferred Vp/Vs ratios to estimate crustal composition in terms of SiO2 content. In the course of the modelling, the status of the PD as a centre of Archean granulitic consolidation has been confirmed. The crustal structure of the anorthosite–rapakivi KP is complex. For the first time, a complicated structure for the lower crust and lower crust–upper mantle transition zone beneath the KP has been determined. The peculiarities of the crustal structure of the KP are quite well explained in terms of formation of rapakivi–anorthosite massifs as originating from melt chambers in the upper mantle and lower crust. An important role for the South Pripyat Fault (SPF), repeatedly activated during Proterozoic–Palaeozoic times, has been ascertained. At the subplatform stage of crustal evolution the SPF was, probably, a magma channel facilitating the granitic intrusions of the KP. In the Palaeozoic the fault was reactivated during rifting in the PT.  相似文献   

20.
D. Arcay  M.-P. Doin  E. Tric  R. Bousquet   《Tectonophysics》2007,441(1-4):27-45
At continental subduction initiation, the continental crust buoyancy may induce, first, a convergence slowdown, and second, a compressive stress increase that could lead to the forearc lithosphere rupture. Both processes could influence the slab surface PT conditions, favoring on one side crust partial melting or on the opposite the formation of ultra-high pressure/low temperature (UHP-LT) mineral. We quantify these two effects by performing numerical simulations of subduction. Water transfers are computed as a function of slab dehydration/overlying mantle hydration reactions, and a strength decrease is imposed for hydrated mantle rocks. The model starts with an old oceanic plate ( 100 Ma) subducting for 145.5 Myr with a 5 cm/yr convergence rate. The arc lithosphere is thermally thinned between 100 km and 310 km away from the trench, due to small-scale convection occuring in the water-saturated mantle wedge. We test the influence of convergence slowdown by carrying on subduction with a decreased convergence rate (≤ 2 cm/yr). Surprisingly, the subduction slowdown yields not only a strong slab warming at great depth (> 80 km), but also a significant cooling of the forearc lithosphere at shallower depth. The convergence slowdown increases the subducted crust temperature at 90 km depth to 705 ± 62 °C, depending on the convergence rate reduction, and might thus favor the oceanic crust partial melting in presence of water. For subduction velocities ≤ 1 cm/yr, slab breakoff is triggered 20–32 Myr after slowdown onset, due to a drastic slab thermal weakening in the vicinity of the interplate plane base. At last, the rupture of the weakened forearc is simulated by imposing in the thinnest part of the overlying lithosphere a dipping weakness plane. For convergence with rates ≥ 1 cm/yr, the thinned forearc first shortens, then starts subducting along the slab surface. The forearc lithosphere subduction stops the slab surface warming by hot asthenosphere corner flow, and decreases in a first stage the slab surface temperature to 630 ± 20 °C at 80 km depth, in agreement with PT range inferred from natural records of UHP-LT metamorphism. The subducted crust temperature is further reduced to 405 ± 10 °C for the crust directly buried below the subducting forearc. Such a cold thermal state at great depth has never been sampled in collision zones, suggesting that forearc subduction might not be always required to explain UHP-LT metamorphsim.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号