首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
从月球的自由天平动,引力场和耗散等可以研究月球内部的结构和演化.本文从理论上估计了用激光测月资料推算月球自由天平动的精确度,根据四个激光测月台站的18年的观测资料计算了月球自由天平动的振幅和相位、月球转动惯量等,并初步得到了月球的内部结构和组成成分.  相似文献   

2.
Information about the structure of lunar interior and evolution could be obtained from measurements of lunar free librations, gravitational field, dissipation etc.. In this paper the precision of determining free librations with Lunar Laser Ranging (LLR) data are estimated. Using the observing data from four telescopes for eighteen years the amplitudes and phases of free librations, the moments of inertia ratio of The Moon were determined.  相似文献   

3.
The probable semi-amplitudes of the second and third modes of the Moon's free librations are inferred from the observed semi-amplitude of its first mode, using the statistical relations between the exciting actions and the amplitudes of the free librations, derived in the author's previous paper (Sekiguchi, 1970). It is likely that the semi-amplitudes of these librations exceed some second of arc.  相似文献   

4.
Benoît Noyelles 《Icarus》2010,207(2):887-902
The saturnian coorbital satellites Janus and Epimetheus present a unique dynamical configuration in the Solar System, because of high-amplitude horseshoe orbits, due to a mass ratio of order unity. As a consequence, they swap their orbits every 4 years, while their orbital periods is about 0.695 days. Recently, Tiscareno et al. (Tiscareno, M.S., Thomas, P.C., Burns, J.A. [2009]. Icarus 204, 254-261) got observational informations on the shapes and the rotational states of these satellites. In particular, they detected an offset in the expected equilibrium position of Janus, and a large libration of Epimetheus.We here propose to give a three-dimensional theory of the rotation of these satellites in using these observed data, and to compare it to the observed rotations. We consider the two satellites as triaxial rigid bodies, and we perform numerical integrations of the system in assuming the free librations as damped.The periods of the three free librations we get, associated with the three dimensions, are respectively 1.267, 2.179 and 2.098 days for Janus, and 0.747, 1.804 and 5.542 days for Epimetheus. The proximity of 0.747 days to the orbital period causes a high sensitivity of the librations of Epimetheus to the moments of inertia. Our theory explains the amplitude of the librations of Janus and the error bars of the librations of Epimetheus, but not an observed offset in the orientation of Janus.  相似文献   

5.
The Darwin-Kaula theory of bodily tides is intended for celestial bodies rotating without libration. We demonstrate that this theory, in its customary form, is inapplicable to a librating body. Specifically, in the presence of libration in longitude, the actual spectrum of Fourier tidal modes differs from the conventional spectrum rendered by the Darwin–Kaula theory for a nonlibrating celestial object. This necessitates derivation of formulae for the tidal torque and the tidal heating rate, that are applicable under libration. We derive the tidal spectrum for longitudinal forced libration with one and two main frequencies, generalisation to more main frequencies being straightforward. (By main frequencies we understand those emerging due to the triaxiality of the librating body.) Separately, we consider a case of free libration at one frequency (once again, generalisation to more frequencies being straightforward). We also calculate the tidal torque. This torque provides correction to the triaxiality-caused physical libration. Our theory is not self-consistent: we assume that the tidal torque is much smaller than the permanent-triaxiality-caused torque, so the additional libration due to tides is much weaker than the main libration due to the permanent triaxiality. Finally, we calculate the tidal dissipation rate in a body experiencing forced libration at the main mode, or free libration at one frequency, or superimposed forced and free librations.  相似文献   

6.
S.J. Peale  M. Yseboodt  J.-L. Margot 《Icarus》2007,187(2):365-373
Planetary perturbations of Mercury's orbit lead to forced librations in longitude in addition to the 88-day forced libration induced by Mercury's orbital motion. The forced librations are a combination of many periods, but 5.93 and 5.66 years dominate. These two periods result from the perturbations by Jupiter and Venus respectively, and they lead to a 125-year modulation of the libration amplitude corresponding to the beat frequency. Other periods are also identified with Jupiter and Venus perturbations as well as with those of the Earth, and these and other periods in the perturbations cause several arc second fluctuations in the libration extremes. The maxima of these extremes are about 30″ above and the minima about 7″ above the superposed ∼60, 88-day libration during the 125-year modulation. Knowledge of the nature of the long-period forced librations is important for the interpretation of the details of Mercury's rotation state to be obtained from radar and spacecraft observations. We show that the measurement of the 88-day libration amplitude for the purposes of determining Mercury's core properties is not compromised by the additional librations, because of the latter's small amplitude and long period. If the free libration in longitude has an amplitude that is large compared with that of the forced libration, its ∼10-year period will dominate the libration spectrum with the 88-day forced libration and the long-period librations from the orbital perturbations superposed. If the free libration has an amplitude that is comparable to those of the long-period forced libration, it will be revealed by erratic amplitude, period and phase on the likely time span of a series of observations. However, a significant free libration component is not expected because of relatively rapid damping.  相似文献   

7.
The Moon’s physical librations and determination of their free modes   总被引:2,自引:0,他引:2  
The Lunar Laser Ranging experiment has been active since 1969 when Apollo astronauts placed the first retroreflector on the Moon. The data accuracy of a few centimeters over recent decades, joined to a new numerically integrated ephemeris, DE421, encourages a new analysis of the lunar physical librations of that ephemeris, and especially the detection of three modes of free physical librations (longitude, latitude, and wobble modes). This analysis was performed by iterating a frequency analysis and linear least-squares fit of the wide spectrum of DE421 lunar physical librations. From this analysis we identified and estimated about 130–140 terms in the angular series of latitude librations and polar coordinates, and 89 terms in the longitude angle. In this determination, we found the non-negligible amplitudes of the three modes of free physical libration. The determined amplitudes reach 1.296′′ in longitude (after correction of two close forcing terms), 0.032′′ in latitude and 8.183′′ × 3.306′′ for the wobble, with the respective periods of 1056.13 days, 8822.88 days (referred to the moving node), and 27257.27 days. The presence of such terms despite damping suggests the existence of some source of stimulation acting in geologically recent times.  相似文献   

8.
We analyze the out-of-plane librations of a tethered satellite system that is nominally rotating in the orbit plane. To isolate the librational dynamics, the system is modeled as two point masses connected by a rigid rod with the system mass center constrained to an unperturbed circular orbit. For small out-of-plane librations, the in-plane motion is unaffected by the out-of-plane librations and a solution for the in-plane motion is determined in terms of Jacobi elliptic functions. This solution is used in the linearized equation for the out-of-plane librations, resulting in a Hill’s equation. Floquet theory is used to analyze the Hill’s equation, and we show that the out-of-plane librations are unstable for certain ranges of in-plane spin rate. For relatively high in-plane spin rates, the out-of-plane librations are stable, and the Hill’s equation can be approximated by a Mathieu’s equation. Approximate solutions to the Mathieu’s equation are determined, and we analyze the dominant characteristics of the out-of-plane librations for high in-plane spin rates. The results obtained from the analysis of the linearized equations of motion are compared to numerical simulations of the nonlinear equations of motion, as well as numerical simulations of a more realistic system model that accounts for tether flexibility. The instabilities discovered from the linear analysis are present in both the nonlinear system and the more realistic system model. The approximate solutions for the out-of-plane librations compare well to the nonlinear system for relatively high in-plane rotation rates, and also capture the significant qualitative behavior of the flexible system.  相似文献   

9.
The relations between probable amplitude of the Moon's free libration and its exciting action are obtained using a theory of the stochastic process. Among the three modes of the free libration, the one in longitude is most prominent if the exciting effect is isotropic. If the excitations are caused by crater-producing meteoritic impacts, it is very probable that the free librations in longitude exist whose semi-amplitude exceeds 1.  相似文献   

10.
The application of computer technology has permitted more and more problems of dynamical astronomy to be solved more easily, quickly, and accurately. In this area, numerical integration is often very efficient, and sometimes essential. There is often, however, a temptation to choose numerical integration simply because it is the easiest way to attack the problem. Sometimes this works to the detriment of a satisfactory understanding of the physics of the problem under study. It is particularly the case for the free, or Eulerian, oscillations. The forces that create such a motion are not of gravitational origin and are not even conservative. The theory can only specify the frequencies of oscillation, not their amplitudes nor phases. The case is complicated when the free oscillations interact with gravitationally-forced oscillations, a situation that is almost inevitable, since nothing is isolated in the Universe. The first author has particularly studied this problem in the case of the rotation of the Moon, and published the first credible determinations of the lunar free libration. In this kind of problem, the observations have to be used and care must to be taken to create no spurious free librations in the results by using numerical integrations to describe the other related motions. A differential correction of the starting conditions to fit the observations does not necessarily give any valid information on the real free oscillation contained in the data. An analytical model is necessary, if the goal of the research is to understand the origins and characteristics of an Eulerian oscillation in such a system.  相似文献   

11.
In the framework of the space missions to Mercury, an accurate model of rotation is needed. Librations around the 3:2 spin-orbit resonance as well as latitudinal librations have to be predicted with the best possible accuracy. In this paper, we use a Hamiltonian analysis and numerical integrations to study the librations of Mercury, both in longitude and latitude. Due to the proximity of the period of the free libration in longitude to the orbital period of Jupiter, the 88-day and 11.86-year contributions dominate Mercury’s libration in longitude (with the Hermean parameters chosen). The amplitude of the libration in latitude is much smaller (under 1 arcsec) and should not be detected by the space missions. Nevertheless, we point out that this amplitude could be much larger (up to several tens of arcsec) if the free period related to the libration in latitude approaches the period of the Jupiter-Saturn Great Inequality (883 years). Given the large uncertainties on the planetary parameters, this new resonant forcing on Mercury’s libration in latitude should be borne in mind.  相似文献   

12.
An analytical theory of lunar physical librations based on its two-layer model consisting of a non-spherical solid mantle and ellipsoidal liquid core is developed. The Moon moves on a high-precision orbit in the gravitational field of the Earth and other celestial bodies. The defined fourth mode of a free libration is caused by the influence of the liquid core, with a long period of 205.7 yr, with amplitude S = 0″0395 and with an initial phase Π0 = ?134° (for the initial epoch 2000.0). Estimates of dynamic (meridional) oblatenesses of a liquid core of the Moon have been estimated: ?D = 4.42 × 10?4, μD = 2.83 × 10?4 (?D + μD = 7.24 × 10?4). These results have been obtained as a result of comparison of the developed analytical theory of physical librations of the Moon with the empirical theory of librations of the Moon constructed on the basis of laser observations.  相似文献   

13.
Physical librations of the Moon are small cyclic perturbations with periods of one month and longer, and amplitudes of 100 arc seconds or less. These cause the selenographic axes fixed in the true Moon to have a different orientation than similar axes fixed in the mean Moon.Physical librations have two types of effects of present interest. If the orbital elements of a lunar satellite are referred to selenographic axes in the true Moon as it rotates and librates, then the librations cause changes in the orientation angles (node, inclination, and periapsis argument of the satellite) large enough that long-period perturbation theory cannot be used without compensation for such geometrical effects. As a second effect, the gravitational potential of the Moon is actually wobbled in inertial space, a condition not included in the potential expression used in perturbation theory.This paper gives data on the magnitude of the physical librations, the geometrical effects on the orbital elements and the equivalent changes in the coefficients in the potential. It is shown that geometrical effects can be accommodated either by using an inertial axes system or by compensating for the lunar librations and precession when the selenographic axes are used. Further, it is shown that physical effects are small and negligible for all but the most exacting endeavors.  相似文献   

14.
The shaking of Mercury’s orbit by the planets forces librations in longitude in addition to those at harmonics of the orbital period that have been used to detect Mercury’s molten core. We extend the analytical formulation of Peale et al. (Peale, S.J., Margot, J.L., Yseboodt, M. [2009]. Icarus 199, 1-8) in order to provide a convenient means of determining the amplitudes and phases of the forced librations without resorting to numerical calculations. We derive an explicit relation between the amplitude of each forced libration and the moment of inertia parameter (B-A)/Cm. Far from resonance with the free libration period, the libration amplitudes are directly proportional to (B-A)/Cm. Librations with periods close to the free libration period of ∼12 years may have measurable (∼arcsec) amplitudes. If the free libration period is sufficiently close to Jupiter’s orbital period of 11.86 years, the amplitude of the forced libration at Jupiter’s period could exceed the 35 arcsec amplitude of the 88-day forced libration. We also show that the planetary perturbations of the mean anomaly and the longitude of pericenter of Mercury’s orbit completely determine the libration amplitudes.While these signatures do not affect spin rate at a detectable level (as currently measured by Earth-based radar), they have a much larger impact on rotational phase (affecting imaging, altimetry, and gravity sensors). Therefore, it may be important to consider planetary perturbations when interpreting future spacecraft observations of the librations.  相似文献   

15.

We present fully three-dimensional equations to describe the rotations of a body made of a deformable mantle and a fluid core. The model in its essence is similar to that used by INPOP19a (Integration Planétaire de l’Observatoire de Paris) Fienga et al. (INPOP19a planetary ephemerides. Notes Scientifiques et Techniques de l’Institut de Mécanique Céleste, vol 109, 2019), and by JPL (Jet Propulsion Laboratory) (Park et al. The JPL Planetary and Lunar Ephemerides DE440 and DE441. Astron J 161(3):105, 2021. doi:10.3847/1538-3881/abd414), to represent the Moon. The intended advantages of our model are: straightforward use of any linear-viscoelastic model for the rheology of the mantle; easy numerical implementation in time-domain (no time lags are necessary); all parameters, including those related to the “permanent deformation”, have a physical interpretation. The paper also contains: (1) A physical model to explain the usual lack of hydrostaticity of the mantle (permanent deformation). (2) Formulas for free librations of bodies in and out-of spin-orbit resonance that are valid for any linear viscoelastic rheology of the mantle. (3) Formulas for the offset between the mantle and the idealised rigid-body motion (Peale’s Cassini states). (4) Applications to the librations of Moon, Earth, and Mercury that are used for model validation.

  相似文献   

16.
Jacques Henrard 《Icarus》2005,178(1):144-153
  相似文献   

17.
The dynamics of synchronous rotation and physical librations are revisited in order to establish a conceptually simple and general theoretical framework applicable to a variety of problems. Our motivation comes from disagreements between the results of numerical simulations and those of previous theoretical studies, and also because different theoretical studies disagree on basic features of the dynamics. We approach the problem by decomposing the orientation matrix of the body into perfectly synchronous rotation and deviation from the equilibrium state. The normal modes of the linearized equations are computed in the case of a circular satellite orbit, yielding both the periods and the eigenspaces of three librations. Libration in longitude decouples from the other two, vertical modes. There is a fast vertical mode with a period very close to the average rotational period. It corresponds to tilting the body around a horizontal axis while retaining nearly principal-axis rotation. In the inertial frame, this mode appears as nutation and free precession. The other vertical mode, a slow one, is the free wobble. The effects of the nodal precession of the orbit are investigated from the point of view of Cassini states. We test our theory using numerical simulations of the full equations of the dynamics and discuss the disagreements among our study and previous ones. The numerical simulations also reveal that in the case of eccentric orbits large departures from principal-axis rotation are possible due to a resonance between free precession and wobble. We also revisit the history of the Moon's rotational state and show that it switched from one Cassini state to another when it was at 46.2 Earth radii. This number disagrees with the value 34.2 derived in a previous study.  相似文献   

18.
An accurate model of the rotation of the Moon, constructed by numerical integration, has been presented in a previous paper. All direct perturbations capable of producing at least 10–4 seconds of arc on the Moon's rotational motion have been included, and the physical librations resulting from planetary effects and Earth-Moon figure-figure interactions have been presented. The present study deals with the Moon's physical librations resulting from the non-rigidities of the Moon and the Earth. The effects of the Moon's elasticity and of a lunar phase lag are analyzed. Physical librations due to lunar tides and those due to terrestrial tides are presented and described.  相似文献   

19.
For 14 values of the mass parameter μ (from 0.0010 until 0.0150) the non-periodic Transtrojan orbits (aroundL 4 and L5) are investigated, which on the plane restricted problem of three bodies pass the point situated opposite to the body μ (looking from the main mass) with zero velocity in the rotating coordinate system. Results: The Transtrojan state contains a finite number of ‘double librations’ (aroundL 4 and L5); this number decreases with growing value of the mass parameter. Above a value of mass parameter between 0.010 and 0.015 no further double-libration takes place. Certain topologic properties of the Transtrojan state are found; for example this state has a phase of narrowing and a phase of widening of the single librations; thereby the amplitudes of the librations fluctuate in a characteristic manner. The investigations will be published inAstronomische Nachrichten in German language.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号