首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The statistics of pre-midnight 5-m irregularities in the equatorial F region over São Luís is presented. The data set ranges from October 2001 to December 2008 and covers maximum solar-flux-to-minimum solar flux epoch. The variabilities in irregularity parameters, namely, height and time of their appearance in the radar echoes, with solar-flux variation are presented. The seasonal variations (combined over all years, irrespective of solar-flux) of occurrence of irregularities, occurrence of bottom-type layer (or bottom-side irregularities without plume) and bottom-side/topside plume (or bottom-side irregularities with plume) are presented. The largest occurrences of bottom-side irregularities without plume and with plume are found on April (equinox) and December (summer) months respectively. The ambient ionospheric conditions namely prereversal evening vertical drift, bottom-side density gradient and off-equatorial E region conductivity are inferred using digisonde measurements during April 2002 and December 2002. Based on these conditions and recent studies on gravity wave climatology over Brazil, it is suggested that shear in zonal plasma drift and low gravity wave activity may account for less occurrence of plume during April as compared to December months. This suggestion is quantified using numerical simulation model of collisional-interchange instability (CII) and plasma bubble.  相似文献   

2.
In contrast to the way that the spreading of irregularities in a plasma is usually considered, the diffusion spreading of irregularities stretched along the geomagnetic field B is examined using a three-dimensional rigorous numerical model of quasi-neutral diffusion in the presence of a magnetic field, in conjunction with the actual height variations of the diffusion and conductivity tensors in the ionosphere. A comparison with the earlier constructed approximate model of unipolar diffusion was made. As in the previous case, the same peculiarities of irregularity spreading in the inhomogeneous background ionospheric plasma were observed. The accuracy of the approximate model for describing the process of spreading of anisotropic ionospheric irregularities is established. Time relaxation effects of real heating-induced ionospheric irregularities on their scale transverse to B are presented using the approximate analytical model for the case of a quasi-homogeneous ionospheric plasma. The calculated results have a vivid physical meaning and can be directly compared with experimental data on the radiophysical observations of artificial heating-induced irregularities created by powerful radio waves in the ionosphere.  相似文献   

3.
With the action of powerful, high-frequency (HF) radio waves, the ionosphere plasma will depart from the equilibrium state and the non-Maxwellian distribution function can be produced. An artificial field-aligned irregularities (AFAI) model is introduced to describe the distortion from the normal shape, and the measured data are analyzed with this model during ionosphere heating at a 186-km height on August 15th, 2006. The electron temperature and density deduced from the AFAI model are compared with the results obtained from a standard procedure. The inversion of the electron temperature is evidently affected, and the overestimation is up to 22.9%. Owing to the introduction of the AFAI model, the new irregularities’ parameters can be obtained, which implies that incoherent scatter radar is feasible as a ground-based instrument to diagnose information on irregularities.  相似文献   

4.
Summary In this paper the modified formula for scattering cross-section of radio waves from the ionosphere has been deduced in presence of time-varying random irregularities. The anisotropic behaviour of the medium which arises due to the presence of the geomagnetic field along with the time-varying irregularities of the medium has been considered. The derived expression for the dielectric tensor for the above medium has been utilised to obtain the required cross-section. The latitude, altitude, azimuth and polarisation angle dependence of scattering of radio waves from the ionosphere has been shown. The evaluated formula may be verified experimentally and the importance of the geomagnetic field and irregularities may then be analysed.  相似文献   

5.
本文首先从电子密度及电子温度的输运方程和考虑自作用时的电磁波波动方程出发,利用简正模展开的方法推导出泵波在反射区域激发出热自聚焦不稳定性(thermal self-focusing instabilities,TSFI)所需电场阈值以及其增长率的完整数学表达式,并估算了TSFI激发阈值及所对应的有效辐射功率(ERP)的量级.随后利用三维垂直加热的理论模型,结合国际参考电离层(IRI-2012)和中性大气模型(MSIS-E-00)给出的背景参数,数值模拟了大功率高频泵波加热电离层时泵波反射区域电子密度及电子温度因TSFI而产生的变化及发展的过程,并对比分析了不同背景参数对较热效果的影响.结果表明:当高频泵波的加热阈值达到或超过百毫伏每米的量级时,即可激发TSFI,发展出大尺度电子密度及温度不均匀体,这些不均匀体内的密度耗空约为4%~10%,而电子温度剧烈增长,到达背景温度值的1.6~2.1倍;且在相当的加热条件下,背景电子温度越低、电子密度越小,加热效果越显著;电子密度及电子温度的扰动幅度随着加热时间的推移而逐渐减小,即扰动逐渐趋于饱和,且电子温度要快于电子密度达到饱和状态.本文还对泵波反射高度处的电子密度及电子温度变化率进行采样并求得其功率谱密度,分析结果表明:TSFI发展出的大尺度不均匀体满足幂律谱结构,谱指数随着加热的进行逐渐趋于稳定,白天与夜间的幂律谱指数区别不大,但电子密度与电子温度的幂律谱有所区别.  相似文献   

6.
This paper is concerned with the oblique propagation of decametric radio waves in the ionosphere with random electron density irregularities. Effective parameters are introduced for calculating the influence of irregularities on the wave field structure. A technique is proposed for determining these parameters from measurements of statistical characteristics of the signal in the vicinity of a regular caustic. The technique uses asymptotic expressions obtained using the interference integral method and perturbation theory, as well as matching them to the numerical solution on the basis of the method of characteristics. A global semi-empirical model that is updated for current ionospheric conditions is used to specify the background medium. The proposed technique has been tested using data from a number of mid-latitude paths. Results obtained in this study testify that the technique deserves a practical implementation.  相似文献   

7.
8.
Presently, the study of the mantle flow structure is mainly based on numerical modeling. The most important stage of the development of a computer program is its testing. For this purpose, results of various test models of convection flows with a given set of parameters are compared. The solution of the Stokes equation, involving the derivative of viscous stresses, is most difficult. Exact analytical solutions of the Stokes equation are obtained in this work for various cases of special loads. These solutions can be used as benchmarks for testing programs of numerical calculation of viscous flows in both geophysics and engineering. The advantage of this testing technique is the exceptional simplicity of the solution form, the admissibility of any spatial viscosity variations, and the fact that solutions can be compared not for a narrow set of the solution parameters but for any distributions of velocities, viscous stresses, and pressures at all points of the space.  相似文献   

9.
The Equatorial Spread-F (ESF) phenomenon is recorded in ionograms as a hierarchy of plasma instabilities in the F-layer of the equatorial ionosphere. The ESF is characterized by irregularities in the plasma (electron and ion) density and electric field distributions perpendicular to the Earth’s magnetic field. Large scale irregularities are generated by a primary plasma instability that develops in electric fields and plasma densities. Other secondary instabilities then develop and generate irregularities at several scale sizes that often produce a plasma ‘hole’ or ‘bubble’ that rises up with high E×B velocities. The ESF/plasma bubble phenomenon has been studied extensively with experimental techniques and modeling, which revealed important features. In the bottom side F-layer, near sunset, when the vertical density gradient steepens as the layer is supported by the horizontal (North–South) Earth’s magnetic field lines against the omnipresent Earth’s gravitational acceleration (g), the plasma conditions can give rise to Rayleigh–Taylor (RT) type instability. But the observed day to day variability of the ESF occurrence suggested that other agencies may also be involved in generating the instability. Sekar and Raghavarao (1987) with linear theory, and Raghavarao, Sekar and Suhasini (1992), with non-linear numerical modeling, suggested that vertical downward (upward) winds in the ambient gas have the potential to cause (inhibit) the ESF/bubble phenomenon. The presence of downward winds near the equator was reported earlier. In this paper, we show evidence for the presence of downward winds collocated with irregularities in electric fields and plasma densities as revealed by an unique combination of highly accurate measurements with instruments onboard the DE-2 satellite. The observations reported here are also consistent with the notion that the build-up of the equatorial ionization anomaly (EIA) prior to local sunset is important for the ESF instability.  相似文献   

10.
11.
The parameters of the neutral atmosphere have been studied using artificial periodic irregularities of the ionospheric plasma. A few measurement cycles were carried out in 2006–2007 using the new method, in particular: irregularities were created by powerful radiowaves at two separated frequencies. The possibilities of the method have been demonstrated. Based on the relaxation times of artificial periodic irregularities measured at two frequencies, the N(z) electron density profiles in the 95–115 km height interval have been determined and have been used to estimate the parameters of the neutral atmosphere. The results of determining the temperature and density of the neutral atmosphere are presented and compared with the data obtained earlier.  相似文献   

12.
The French micro-satellite DEMETER (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions) was launched on June 29, 2004. The orbit of DEMETER is polar, circular with an altitude of 710 km. The main scientific objective of this mission is to study the ionospheric perturbations, which may be linked to seismic activity. To achieve this, the payload of DEMETER allows the measurement of some important plasma parameters (ion composition, electron density, temperature and energetic particles). This paper presents examples of electron and ion density irregularities simultaneously observed for three earthquakes that occurred in the mid-latitude region. The DEMETER in situ measurements show the presence of electron and ion density irregularities near the epicenter of these earthquakes. These perturbations were recorded by the ISL (Langmuir Probe) and IAP (thermal plasma analyzer) experiments onboard DEMETER. The repetitiveness of the perturbations close to the epicenters is shown for these three events.  相似文献   

13.
This paper provides a review on some of the electrostatic coupling effects relevant for generating/modifying plasma irregularities during nighttime in the low latitude ionosphere based on recent observations. Emphasis is given to the role of large polarization electric field associated with an unstable region affecting another region remotely located. Recent radar observations on valley region and E region irregularities from low latitudes show convincing evidence in support of effective electrostatic field coupling along the magnetic field line for their manifestation. Interestingly, the low latitude observations clearly show the ineffectiveness of plasma bubble related fringe fields in generating low latitude valley region irregularities unlike that over the dip equator. Velocity perturbations associated with the unstable low latitude E region relevant for studying the seeding of equatorial spread F are also shown. These new observations have been critically examined in the light of existing experimental knowledge and current understanding of the electrostatic coupling effects for the generation/modification of plasma irregularities in a remote region.  相似文献   

14.
Excitation of upper hybrid waves associated with the ionospheric heating experiments is assumed to be essential in explaining some of the features of stimulated electromagnetic emissions (SEE). A direct conversion process is proposed as an excitation mechanism of the upper hybrid waves where the energy of an obliquely propagating electromagnetic pump wave is converted into the electrostatic upper hybrid waves due to small-scale density irregularities. We performed electromagnetic particle-in-cell simulations to investigate the energy conversion process in the ionospheric heating experiments. We studied dependence of the amplitude of the excited wave on the propagation angle of the pump wave, scale length of the density irregularity, degree of the irregularity, and thermal velocity of the plasma. The maximum amplitude is found to be 37% of the pump amplitude under an optimum condition.  相似文献   

15.
An overall consistent scheme is presented of using VLF transmitter signal spectral broadening observed on a satellite as a detection means of seismic activity. This includes the mechanisms for formation of small-scale plasma density irregularities, and generation of quasi-electrostatic lower hybrid resonance waves due to the scattering of transmitter signal from small-scale plasma irregularities. Both points are discussed in detail on quantitative level.  相似文献   

16.
本文提出了大气重力波触发Rayleigh-Taylor不稳定性并导致大尺度赤道扩展F的理论.重力波作为外部扰动派触发等离子体扰动,这种扰动在Rayleigh-Taylor不稳定性的作用下继续增长,经过400s扰动幅度就能增长到50%,经过700s后幅度趋近100%,即为完全的等离子体泡.由于E区的影响,赤道扩展F主要出现于晚上.本文的理论阐明了重力波与Rayleigh-Taylor不稳定性相互作用的性质,揭示了大尺度赤道扩展F的产生机制.  相似文献   

17.
Using a mathematical modeling method, evolutions of super-small-scale irregularities of electron concentration stretched along the geomagnetic field which could be formed in the magnetized ionospheric plasma of the F2 layer both in a natural way and at an artificial impact on it, in particular, during heating experiments, are studied. Evolution in time of the initially formed irregularities of two types having different shape of the cross sections lateral to the magnetic field (types of direct narrow long band and with a circular cross section) is calculated. It is found that such irregularities during times tens of times shorter than the time of the electron free path time spread out and disappear, accomplishing thereby periodic attenuating oscillations. The period of these oscillations can be equal to both the period of Langmuir oscillations of electrons and the period of cyclotron oscillations of electrons depending on the irregularity type and its initial parameters.  相似文献   

18.
Results are shown from an experimental campaign where satellite scintillation was observed at three sites at high latitudes and, simultaneously, the F region plasma flow was measured by the nearby EISCAT incoherent scatter radar. The anisotropy parameters of field-aligned irregularities are determined from amplitude scintillation using a method based on the variance of the relative logarithmic amplitude. The orientation of the anisotropy in a plane perpendicular to the geomagnetic field is compared with the direction of F region plasma flow. The results indicate that in most cases a good agreement between the two directions is obtained.  相似文献   

19.
The plasma instability process during internal gravity wave propagation through the ionospheric E region is considered. The growth rate of the instability has been found and it has been shown that it depends on perturbation wavelength, gravity wave parameters and direction of propagation. The conditions for the instability are favorable when the vorticity of the associated neutral motion becomes antiparallel to the geomagnetic field. In the proposed instability mechanism plasma irregularities could seed the large-scale sporadic E layer structuring because they are generated in situ as a part of the same neutral wind structure that serves to initiate the formation of the layer.  相似文献   

20.
A unified picture of plasma irregularities in equatorial spread F is developed from the analysis of satellite, sounding rocket, and coherent scatter radar observations. The coherent scatter data are analyzed using a new in-beam radar imaging technique that permits direct comparison between radar data, in situ data, and computer simulations of the irregularities. Three varieties of irregularities, all produced by ionospheric interchange instabilities, are found to occur. Thin bottom-type layers are composed of waves with primary transverse wavelengths less than about 1 km and with significant parallel wavenumbers. These exist on magnetic flux tubes controlled by the E region dynamo and drift westward in the postsunset ionosphere. A nonlocal analysis is used to calculate their linear growth rate. When the F region dynamo takes control of the flux tube, bottomside irregularities can emerge. These are more robust irregularities with longer primary wavelengths and which exhibit greater vertical development. Nonlinear analyses explain the appearance of steepened structures in rocket observations and solitary waves in satellite observations of bottomside layers. The one-dimensional spectra of these irregularities obey power laws but are anisotropic and have variable spectral indices and spectral breaks. Very strong polarization electric fields can eject large regions of deeply depleted plasma through the F peak and form topside irregularities. Theoretical calculations supported by satellite data show that ion inertia may become important for topside irregularities. The one-dimensional spectra of irregularities in the inertial regime obey a k−5/3 power law, but strong plasma inhomogeneity implies that Kolmogorov weak turbulence is not the explanation. Topside depletions are shown to bifurcate and also to pinch off from the bottomside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号