首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sequence of images taken at different positions in the resonance lines of Ca ii, Mg ii, and H i was obtained over a quiescent prominence with the LPSP instrument on OSO-8. Ca ii K (and H) profiles are reconstructed at different locations in the prominence with a (10 × 5) arc sec2 resolution. Significant variations of FWHM and line shifts are found: FWHM range from 0.14 Å to 0.5 Å; blue shifts reach about 14 km s-1. The ratio of K to H absolute intensities shows a large spread around the average value of 1.2. The same ratio for the Mg ii lines in the whole prominence is higher (1.7), a fact already noticed at the edge of an active prominence (Vial et al., 1979). The ionization degree, as measured by the L/Ca K ratio, shows noticeable variations within the prominence. The L intensity is about 0.3 times the intensity measured in the quiet Sun, and the L/L ratio is less than one half the disk value. These results indicate important variations of the thermal conditions inside the prominence.DASOP, Observatoire de Paris, 92190 Meudon, France.  相似文献   

2.
Measurements of the Sun in the near-infrared He i 10830 Å absorption line were performed using the echelle spectrograph with a dispersion of 6.71 mÅ per pixel at the Vacuum Tower Telescope (German Solar Telescopes, Teide Observatory, Izaña, Tenerife, Spain) on May 26, 1993. These measurements were compared with full-disc soft X-ray images of the Sun (Japanese solar satellite Yohkoh), full-disc solar images in H (Big Bear Solar Observatory), full-disc solar images in the He i 10830 Å line (National Solar Observatory, Kitt Peak) and with full-disc microwave solar maps at 37 GHz (Metsähovi Radio Research Station). In the He 10830 Å line the Sun displays a limb darkening similar to that in the visible part of the spectrum. Active regions and H filaments show a strong absorption in the He 10830 Å line, whereas the absorption is weak in coronal holes.  相似文献   

3.
We obtained time-sequence spectroscopic observations in (Fe x) 6374 Å and (Fe xiv) 5303 Å lines successively with the 25-cm coronagraph, and narrow-band and Doppler images in 5303 Å line by the 2-D 10-cm Doppler coronagraph NOGIS at the Norikura Solar Observatory, of a coronal region for about 7 h on 9 19–20, 2001. The raster scans were obtained with a quasi-periodicity of about 14 min and NOGIS obtained the images with an interval of about 1 min. The coronal region observed showed the formation of a coronal loop by a high-speed surge in the 6374 Å line rising from one of the footpoints of the loop. Off the limb spectroscopic observations in the 6374 Å line showed large velocities along the line of sight and vertical to the solar limb at the time of formation of the loop. The 5303 Å line observations showed negligible line-of-sight velocities and low vertical velocities when compared to those in the 6374 Å line. A hump in the intensity plots in 5303 Å with height appears to move up with respect to the solar limb with an average velocity of 4km s–1. The FWHM of the 6374 Å showed a much smaller value of about 0.7 Å near the foot point as compared to a value of 1.2 Å at larger heights at the beginning of observations. Later as the loop developed, the FWHM of 6374 Å line showed a gradual decrease along the loop up to 70 from the limb, reached a minimum value of about 0.5 Å and then increased with height during the formation of the loop; this trend lasted for about 2 h. About 3 h after the beginning of the formation of the loop, the FWHM of 6374 Å emission line showed normal values and normal rate of increase with height with some fluctuations. The FWHM of the 5303 Å line did not show such variations along the loop and showed normal decrease in FWHM with height found earlier (Singh et al., 2003a). These observations suggest that a relatively cooler plasma at a temperature of about 0.7 MK or less (corresponding to minimum value of FWHM of 0.5 Å) was ejected from the transition region with a large velocity of about 48km s–1, heated up in the corona by some process and formed a coronal loop with a height of about 200 above the limb that had lifetime greater than 4 h. It appears that the plasma moved from one of the footpoints and the loop was formed by evaporation of chromospheric plasma. No large-scale brightening and H flare were observed in this region during the observational period of 7 h.On leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

4.
O vi ( = 1032 Å) profiles have been measured in and above a filament at the limb, previously analyzed in H i, Mg ii, Ca ii resonance lines (Vial et al., 1979). They are compared to profiles measured at the quiet Sun center and at the quiet Sun limb.Absolute intensities are found to be about 1.55 times larger than above the quiet limb at the same height (3); at the top of the prominence (15 above the limb) one finds a maximum blue shift and a minimum line width. The inferred non-thermal velocity (29 km s–1) is about the same as in cooler lines while the approaching line-of-sight velocity (8 km s–1) is lower than in Ca ii lines.The O vi profile recorded 30 above the limb outside the filament is wider (FWHM = 0.33 Å). It can be interpreted as a coronal emission of O vi ions with a temperature of about 106 K, and a non-thermal velocity (NTV) of 49 km s–1. This NTV is twice the NTV of quiet Sun center O vi profiles. Lower NTV require higher temperatures and densities (as suggested by K-coronameter measurements). Computed emission measures for this high temperature regime agree with determinations from disk intensities of euv lines.  相似文献   

5.
We compare observations of an eruptive and a quiescent prominence in order to better understand the energetic processes in an eruptive prominence. Observations of an eruptive prominence were obtained in H, several UV emission lines (1215–1640 Å), and coronal white light at approximately 19:00 UT on September 20, 1980. The data we present shows the development of the eruption in the H and UV emission lines and is compared with the intensities from similar observations of a quiescent prominence. While the event is coincident with some coronal changes, above 1.2 and up to 1.5 solar radii, it does not result in a true coronal mass ejection event.The comparison between the eruptive and quiescent prominences reveals several differences which suggest that the activation consists not only of a mechanical movement of material, but also changes in the temperature of the prominence plasma. Some prominence material that does not seem to participate in the large scale prominence motion is heated during the eruptive event. Most of this material is heated to transition zone temperatures with almost no cool core (i.e., no or very little H emission). The behavior indicates that there are structures that are first cool and then heat up to transition zone temperatures (apparently remaining stable for some time at these temperatures). Since this is an unstable temperature region for prominence type structures the energy transport that allows this is not understood and presents an interesting theoretical problem.Member of the Carrera del Investigador, CONICET, Argentina, presently at The University of Alabama in Huntsville.  相似文献   

6.
As a part of a study of the cause of solar coronal heating, we searched for high-frequency (1 Hz) intensity oscillations in coronal loops in the [Fexiv] coronal green line. We summarize results from observations made at the 11 August 1999 total solar eclipse from Râmnicu-Vâlcea, Romania, through clear skies. We discuss the image reduction and analysis through two simultaneous series of coronal CCD images digitized at 10 Hz for a total time of about 140 s. One series of images was taken through a 3.6 Å filter isolating the 5303 Å[Fexiv] coronal green line and the other through a 100 Å filter in the nearby K-corona continuum. Previous observations, described in Pasachoff et al. (2000), showed no evidence for oscillations in the [Fexiv] green line at a level greater than 2% of coronal intensity. We describe several improvements made over the 1998 eclipse that led to increased image clarity and sensitivity. The corona was brighter in 1999 with the solar maximum, further improving the data. We use Fourier analysis to search in the [Fexiv] channel for intensity oscillations in loops at the base of the corona. Such oscillations in the 1-Hz range are predicted as a result of density fluctuations from the resonant absorption of MHD waves. The dissipation of a significant amount of mechanical energy from the photosphere into the corona through this mechanism could provide sufficient energy to heat the corona. A Monte Carlo model of the data suggests the presence of enhanced power, particularly in the 0.75–1.0 Hz range, and we conclude that MHD waves remain a viable method for coronal heating.  相似文献   

7.
MARTIN  RENATO  MACCARI  LISA  NOCI  GIANCARLO 《Solar physics》1997,172(1-2):215-223
We investigate the expected emission from coronal transients in the following spectral lines observable with the Ultraviolet Coronagraph Spectrometer (UVCS) on board SOHO: Hi L 1216 Å, Ovi 1032–1037 Å, Nv 1239–1243 Å, Mgx 610–625 Å, Sixii 499–521 Å, and Fexii 1242 Å. We calculate line intensities and profiles for typical CME conditions, and we analyse their relation with the properties of the perturbed coronal region. We find that significant changes in UV line intensities are produced during a coronal transient. An overall decrease of the Hi L intensity is found, which is mainly due to the Doppler dimming produced by the increase in plasma outflow velocity. The emission from heavy ions is instead mainly affected by variations in plasma density and temperature. We expect to compare these results with the future UVCS observations of coronal transients.  相似文献   

8.
Singh  Jagdev  Sakurai  Takashi  Ichimoto  Kiyoshi  Muneer  S. 《Solar physics》2003,212(2):343-359
Spectra around the 6374 Å [Fex] and 7892 Å [Fexi] emission lines were obtained simultaneously with the 25-cm coronagraph at Norikura Observatory covering an area of 200 ×500 of the solar corona. The line width, peak intensity and line-of-sight velocity for both the lines were computed using Gaussian fits to the observed line profiles at each location (4 ×4 ) of the observed coronal region. The line-width measurements show that in steady coronal structures the FWHM of the 6374 Å emission line increases with height above the limb with an average value of 1.02 mÅ arc sec–1. The FWHM of the 7892 Å line also increases with height but at a smaller average value of 0.55 mÅ arc sec–1. These observations agree well with our earlier results obtained from observations of the red, green, and infrared emission lines that variation of the FWHM of the coronal emission lines with height in steady coronal structures depends on plasma temperatures they represent. The FWHM gradient is negative for high-temperature emission lines, positive for relatively low-temperature lines and smaller for emission lines in the intermediate temperature range. Such a behaviour in the variation of the FWHM of coronal emission lines with height above the limb suggests that it may not always be possible to interpret an increase in the FWHM of emission line with height as an increase in the nonthermal velocity, and hence rules out the existence of waves in steady coronal structures.  相似文献   

9.
The new coronameter described in this paper, now in service at Pic du Midi Observatory, has been designed for the study of coronal condensations with a 30 spatial resolution. The instrument associates measurements of the K-corona polarized light with simultaneous pictures of the coronal structures as seen in the light of the green emission line of Fe xiv (5303 Å). It has allowed us to engage in an extensive program of observation devoted to the study of electron density in active coronal regions. As an example we present results concerning a coronal condensation observed on 1980 February 15, which is some hours before the time of the India-Kenya total eclipse.L. A. du C.N.R.S. No. 040285.  相似文献   

10.
In order to study the electron density at the scale of the most encountered structures in coronal active regions a new multichannel coronagraph associated with a photoelectric spectrograph is now used at the Pic-du-Midi Observatory. In its quasi-routine mode this instrument, which is described in this paper, works with a 30 field aperture in a parallel manner with aK-polarimeter. On each observed region it obtains maps of intensities of the 3388, 10747, and 10798 Å emission lines due to Fexiii ion. Each measurement point is associated with a quasi-simultaneous image of the emission corona structures viewed in the light of the5303 Å line of Fexiv. Three examples of observations are given and the capabilities are discussed.Measuring electron density in coronal active regions. II A multichannel photoelectric coronagraph with a photo-electric spectrograph and a reflex monitor at5303 Å.LA du CNRS No. 040285.  相似文献   

11.
The physical properties in the coronal disturbance (CD) (W90, N25°) associated with an active prominence are investigated on the basis of the intensities and profiles of 5694 Å Caxv and 6702 Å Nixv lines and continuum measured in the eclipse coronal spectra of 31 July, 1981. The spectrograms have been taken with a dispersion of between 7 to 10 Å mm-1 and a solar image of 15 mm in diameter. The following characteristics of the CD have been deduced. The CD occurred cospatially with an active prominence and consisted of two discrete regions with different temperatures penetrating each other. (1) Caxv region: T e= 3.8 × 106 K, the length along the slit of the spectrograph Z 65000 km, the effective line-of-sight length L 20000 km, the average electron density , nonthermal velocities V t= (20–32) km s-1. (2)Nixv-Caxiii region: T e= 2.3 × 106 K, Z 37000 km, L 35000 km, n e 1 × 109 cm-3, V t= (23–30) km s-1. A macroscopic mass motion has been discovered within the Nixv region of the CD from the Doppler shifts of the 6702 Å Nixv line: V r= + 27 km s-1 on the lower and V r= - 12 km s-1 on the upper border of the CD. The average height of the CD was H 0.08 R . The radial velocities in the prominence found from the emission line tilts are + 12 and - 8 km s-1 on its lower and upper borders. A similar picture of the mass motion in the CD and the prominence speaks in favour of an intimate relation between them.  相似文献   

12.
For almost 20 years the physical nature of globally propagating waves in the solar corona (commonly called “EIT waves”) has been controversial and subject to debate. Additional theories have been proposed over the years to explain observations that did not agree with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory with the fast-mode wave interpretation was challenged by differing viewpoints from the twin Solar Terrestrial Relations Observatory spacecraft and data with higher spatial and temporal resolution from the Solar Dynamics Observatory. In this article, we reexamine the theories proposed to explain EIT waves to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that the so-called EIT waves are best described as fast-mode large-amplitude waves or shocks that are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona.  相似文献   

13.
X-ray photographs obtained with a zone plate camera on October 3, 1967 in the wavelength band 49.5–52.5 Å have been investigated photometrically.The most intense X-ray emission corresponds with active regions in H and Ca ii. About one quarter of the total solar flux is emitted by the three brightest X-ray sources (A, E and J). X-ray emission from quiet regions is also observed. Limb brightening is found, also at the poles, which indicates a higher electron density at the poles than during solar minimum.The brightest X-ray regions have a very small core of the order of 20. No relation to magnetic field strengths of sunspots has been found. However, a correlation with active prominences cannot be ruled out. X-ray source A is related either to prominence activity or to flare activity. One X-ray region (J) is probably related to flare activity.Assuming an electron temperature of 3 × 106K to 5 × 106K for coronal active regions an emission measure of a few times 1049 cm–3 is derived, which yields an electron density of a few times 1010 cm–3.  相似文献   

14.
In this paper we study the far-UV as well as the UV spectrum of the spectroscopic binary system SZ Psc in the wavelength ranges 1235–1950 Å and 2710–3090 Å, respectively, from spectra obtained with the International Ultraviolet Explorer (IUE). The UV spectrum of SZ Psc is mainly an emission spectrum. The short wavelength region includes emission lines formed from the low chromosphere to the transition region (e.g., Siiv,Civ, andNv) and also a deep and broad absorption line of Feii.The Mgii[1] resonance doublet at about 2800 Å presents a P Cygni profile and a multiple structure with two emission and two absorption satellite components. We also present the emission measure diagram in the temperature region 4.4T e <53.  相似文献   

15.
A detailed list and analysis of line identifications of five UV spectra of the RS CVn-type binary system TY Pyxidis are presented. These spectra are recorded at different phases with the International Ultraviolet Explorer (IUE). Two of them are in the wavelength range1235–1950 Å while the other three in the range2700–3110 Å.The far-UV spectrum of TY Pyx is mainly an emission spectrum dominated by the emission lines of the ions:Ci, Oi, Cii, Siii, Heii, Alii, and Feiii. We also pointed out the existence of a Feiii [34] line in absorption.The UV spectrum between 2700–3110 Å is dominated by weak absorption lines. Two satellite components are indicated for many lines, which correspond to the two stars of the system, in the two out of the three spectra (LWP 13386 and LWP 13347).Violet emission wings are observed for Fei [1], Tii [1],Oiv [1], and Siiii [1]. The UV spectrum of TY Pyx is also characterized by the multi-structure of Mgii [1] resonance lines.Based on data from the International Ultraviolet Explorer, de-archived from the Villafranca Data Archive of the European Space Agency.  相似文献   

16.
During the total solar eclipse of 11 June, 1983, an imaging dual-channel Fabry-Pérot interferometer was used to obtain line profiles simultaneously in the green 5303 Å [Fe xiv] and the red 6374 Å [Fe x] coronal lines at various positions in the corona. Extensive microdensitometry followed by multi-Gaussian curve-fitting analysis has resulted in the determination of coronal temperatures and velocity separations between different pockets of coronal gas in the line of sight over a large extent of the corona. Fewer high temperature zones are to be found in the corona of 1983 compared with our similar green-line measurements of the solar maximum corona of 1980. The data are consistent with a temperature maximum occurring at 1.2 R , as found at the 1980 eclipse, but our new data are insufficient to observe farther out than this radius and so determine the position of a maximum. The velocity field in the corona at the 1983 eclipse is less structured compared with that at the 1980 eclipse and is mainly confined to the zone 20–30km s–1.  相似文献   

17.
Properties of solar-flare EUV flashes measured via a type of ionospheric event, called a sudden frequency deviation (SFD), are presented. SFD's are sensitive to bursts of radiation in the 1–1030 Å wavelength range. He ii 303.8 Å, O v 629.7 Å, HL 972.5 Å and C iii 977.0 Å have essentially the same impulsive time dependence as the 1–1030 Å flash responsible for SFD's. Soft X-rays (2–20 Å) and certain EUV lines have a much slower time dependence than the 1–1030 Å flash. Most SFD's have some fine structure, but marked quasi-periodicity in EUV flashes is quite rare. EUV flashes are closely associated with hard X-ray bursts, white-light emission, microwave radio bursts and small bright impulsive kernels in the H flare. The intensity of EUV flashes depends on the central meridian distance of the H flare location; the intensity decreases at the limb. The total energy radiated in the 10–1030 Å flash for the largest events observed is about 1031 ergs.  相似文献   

18.
Line profiles of He ii 4686 Å and He i 4713 Å from active regions in the chromosphere were observed during the total solar eclipse of February 16, 1980, with a grazing incidence objective grating spectrograph. The Doppler width of the He i triplet line of 4713 Å increases with height and the average width is compatible with width of metallic and hydrogen lines, suggesting that the kinetic temperature of He i triplet emitting region is T 8000 K. This can only be explained by recombination after photo-ionization due to coronal UV radiation. The Doppler width of the Paschen line of He ii 4686 is, without any correction for the separation of subcomponents of the line nor non-thermal velocity, 18.4 km s-1. This line width also shows a tendency to increase with height. After comparison with Doppler widths of He i 4713 and the EUV lines, and a necessary subtraction of non-thermal velocity, it is shown that this line is emitted in a 2 × 104 K temperature region, which again supports the view that this line is emitted through the recombination process after photoionization due to coronal XUV radiation below 228 Å.  相似文献   

19.
Recent R-matrix calculations of electron impact excitation rates in Fe xii are used to derive the theoretical emission line ratio R 1 = I(195.1 Å)/I(1242 Å), which is potentially a useful electron density diagnostic for the solar inner corona (r 1.05 61-01). These results are found to be significantly different from the earlier estimates of Withbroe and Raymond (1984), but are in good agreement with the observed values of R 1, for the quiet Sun and an active region. Adoption of the R-matrix atomic data for the 1242 Å line in the coronal iron abundance determination removes an existing discrepancy between results derived from the EUV transition and other iron lines in the solar XUV spectrum. The R-matrix calculations confirm the prediction of Withbroe and Raymond that the earlier discrepancies in R 1 and the iron abundance were due to the 1242 Å line excitation rates being underestimated by a factor of ~2. Withbroe and Raymond's paper is, therefore, an excellent example of how astronomical observations can be used to accurately predict atomic physics data.  相似文献   

20.
As part of a study of the cause of solar coronal heating, we searched for high-frequency (1 Hz) intensity oscillations in coronal loops in the [Fexiv] coronal green line. We summarize results from observations made at the 3 November 1994, total solar eclipse from the International Astronomical Union site in Putre, Chile, through partly cloudy skies, and at the 26 February 1998 total solar eclipse from Nord, Aruba, through clear skies. We discuss the image reduction and analysis of two simultaneous series of coronal CCD images digitized at 10 Hz for a total time of 160 s in Chile. One series of images was taken through a filter isolating the 5303 Å[Fexiv] coronal green line and the other through a 100 Å filter in the nearby K-corona continuum. We then discuss the modifications made for the 1998 eclipse, and the image reduction and analysis for those image sequences. After standard calibrations and image alignment of both data sets, we use Fourier analysis to search in the [Fexiv] channel for intensity oscillations in loops at the base of the corona. Such oscillations in the 1-Hz range are predicted as a result of density fluctuations from the resonant absorption of MHD waves. The dissipation of a significant amount of mechanical energy from the photosphere into the corona through this mechanism could provide sufficient energy to heat the corona. At neither eclipse do we find evidence for oscillations in the [Fexiv] green line at a level greater than 2% of coronal intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号