首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

基于1986-2015年湖南逐日降水资料、同期美国气象环境预报中心(NCEP)和美国国家大气研究中心(NCAR)再分析资料,通过分析强低频振荡年的汛期强降水特征和低频环流场演变对强降水的影响,建立了湖南省汛期延伸期强降水过程预报指数。结果表明:(1)汛期33%的强降水过程均发生在具有显著30~60 d低频振荡的年份中,且大多位于低频降水峰值阶段。(2)通过对强低频振荡年进行合成发现,在活跃位相,南亚高压偏强偏东,副热带高压偏西偏强,这种环流配置导致中国南方大部分地区的高层环流为辐散,底层环流为辐合,有利于降水的产生。在中断位相,南亚高压呈东西带状分布且其位置偏西、强度偏弱,副热带高压偏东偏弱,使得向湖南地区输送水汽的西南气流减弱,进入降水中断期。(3)基于低频散度场不同位相的变化特征,选取了与低频降水相关的两个关键区,从而建立延伸期预报指数,该指数对低频降水显著年的强降水回报准确率能够达到73%。(4)前期4月黑潮的海温异常(SSTA)可作为湖南省强低频振荡年的预测指标。

  相似文献   

2.
The Madden and Julian Oscillation (MJO) is the most prominent mode of intraseasonal variations in the tropical region. It plays an important role in climate variability and has a significant influence on medium-to-extended ranges weather forecasting in the tropics. This study examines the forecast skill of the oscillation in a set of recent dynamical extended range forecasts (DERF) experiments performed by the National Centers for Environmental Prediction (NCEP). The present DERF experiments were done with the reanalysis version of the medium range forecast (MRF) model and include 50-day forecasts, initialized once-a-day (0Z) with reanalyses fields, for the period between 1 January, 1985, and 31 December, 1989. The MRF model shows large mean errors in representing intraseasonal variations of the large-scale circulation, especially over the equatorial eastern Pacific Ocean. A diagnostic analysis has considered the different phases of the MJO and the associated forecast skill of the MRF model. Anomaly correlations on the order of 0.3 to 0.4 indicate that skillful forecasts extend out to 5 to 7 days lead-time. Furthermore, the results show a slight increase in the forecast skill for periods when convective anomalies associated with the MJO are intense. By removing the mean errors, the analysis shows systematic errors in the representation of the MJO with weaker than observed upper level zonal circulations. The examination of the climate run of the MRF model shows the existence of an intraseasonal oscillation, although less intense (50–70%) and with faster (nearly twice as fast) eastward propagation than the observed MJO. The results indicate that the MRF model likely has difficulty maintaining the MJO, which impacts its forecast. A discussion of future work to improve the representation of the MJO in dynamical models and assess its prediction is presented. Received: 28 December 1998 / Accepted: 27 September 1999  相似文献   

3.
Bimodal representation of the tropical intraseasonal oscillation   总被引:1,自引:1,他引:1  
The tropical intraseasonal oscillation (ISO) shows distinct variability centers and propagation patterns between boreal winter and summer. To accurately represent the state of the ISO at any particular time of a year, a bimodal ISO index was developed. It consists of Madden-Julian Oscillation (MJO) mode with predominant eastward propagation along the equator and Boreal Summer ISO (BSISO) mode with prominent northward propagation and large variability in off-equatorial monsoon trough regions. The spatial–temporal patterns of the MJO and BSISO modes are identified with the extended empirical orthogonal function analysis of 31?years (1979–2009) OLR data for the December–February and June–August period, respectively. The dominant mode of the ISO at any given time can be judged by the proportions of the OLR anomalies projected onto the two modes. The bimodal ISO index provides objective and quantitative measures on the annual and interannual variations of the predominant ISO modes. It is shown that from December to April the MJO mode dominates while from June to October the BSISO mode dominates. May and November are transitional months when the predominant mode changes from one to the other. It is also shown that the fractional variance reconstructed based on the bimodal index is significantly higher than the counterpart reconstructed based on the Wheeler and Hendon’s index. The bimodal ISO index provides a reliable real time monitoring skill, too. The method and results provide critical information in assessing models’ performance to reproduce the ISO and developing further research on predictability of the ISO and are also useful for a variety of scientific and practical purposes.  相似文献   

4.
An equatorial β-plane model which includes realistic non-uniform land-sea contrast and the underlying surface temperature distribution is used to simulate the 30-60 day oscillation (LFO) processes in tropical atmosphere, with emphasis on its longitude-dependent evolution and convective seesaw between Indian and the western Pacific oceans.The model simulated the twice-amplification of the disturbances over Indian and the western Pacific oceans while they are travelling eastward. It reproduced the dipole structure caused by the out-of-phase oscillation of the active centres in these two areas and the periodical transition between the phases of LFO. It is suggested that the convective seesaw is the result of interaction of the internal dynamics of tropical atmosphere with the zonally non-uniform thermal forcing from underlying surface. The convective activities are suppressed over Indonesia mari-time continents whilst they are favoured over the Indian Ocean and western Pacific warm waters, so there formed two active oscillation centres. The feedback of convection with large-scale flow slows down the propagation of disturb-ances when they are intensifying over these two areas, therefore they manifest a kind of quasi-stationary component to favor the ‘dipole’ structure. Whereas the disturbances weaken and speed up over the eastern Pacific cold water re-gion due to the interaction of sensible heating and evaporation with perturbational wind. Therefore the two major centers just show out-of-phase oscillation during onecycle around the latitudinal beltBy introducing the SST anomalies in El Ni?o and La Ni?a years into the surface temperature, we also show that they have significant influence on LFO processes. In an anomalously warm year, the LFO disturbances dissipate more slowly over the central-eastern Pacific region and can travel farther eastward; whilst in an anomalously cold year, the opposite is true.  相似文献   

5.
中国热带大气季节内振荡研究进展   总被引:6,自引:1,他引:6  
李崇银  凌健  宋洁  潘静  田华  陈雄 《气象学报》2014,72(5):817-834
热带大气季节内振荡(包括MJO)是大气环流的重要系统,它的活动及异常既对其他系统有一定的作用,也对长期天气和短期气候有明显影响。因此,热带大气季节内振荡一直是大气科学的前沿研究课题之一。文中对近5—10年中国学者的有关研究工作及其进展做了简要回顾和综合,主要包括:(1)热带大气季节内振荡特别是MJO的动力学机制;(2)热带大气季节内振荡以及MJO的数值模拟问题,特别是大气非绝热加热廓线对模式模拟MJO的重要作用;(3)热带大气季节内振荡和MJO,特别是在赤道西太平洋地区,与ENSO的相互作用关系;(4)热带大气季节内振荡(包括MJO)及其流场形势对西太平洋台风活动的重要影响,即MJO对西北太平洋台风生成数的调制作用,以及热带大气季节内低频气旋性(LFC)和反气旋性(LFAC)流场对西太平洋台风路径的影响;(5)热带大气季节内振荡(包括MJO)的活动及异常对东亚和南亚夏季风建立、活动异常的影响,以及它们与中国降水异常的密切关系。  相似文献   

6.
Potential evapotranspiration (PET) is one of the most critical parameters in the research on agro-ecological systems. The computational methods for the estimation of PET vary in data demands from very simple (empirically based), requiring only information based on air temperatures, to complex ones (more physically based) that require data on radiation, relative humidity, wind speed, etc. The current research is focused on three study areas in Greece that face different climatic conditions due to their location. Twelve PET formulae were used, analyzed and inter-compared in terms of their sensitivity regarding their input coefficients for the Ardas River basin in north-eastern Greece, Sperchios River basin in Central Greece and Geropotamos River basin in South Greece. The aim was to compare all the methods and conclude to which empirical PET method(s) better represent the PET results in each area and thus should be adopted and used each time and which factors influence the results in each case. The results indicated that for the areas that face Mediterranean climatic conditions, the most appropriate method for the estimation of PET was the temperature-based, Hamon’s second version (PETHam2). Furthermore, the PETHam2 was able to estimate PET almost similarly to the average results of the 12 equations. For the Ardas River basin, the results indicated that both PETHam2 and PETHam1 can be used to estimate PET satisfactorily. Moreover, the temperature-based equations have proven to produce better results, followed by the radiation-based equations. Finally, PETASCE, which is the most commonly used PET equation, can also be applied occasionally in order to provide satisfactory results.  相似文献   

7.
8.
The extended-range forecast skill of the ECMWF operational forecast model is evaluated during tropical intraseasonal oscillation (ISO) events in the Indo-West Pacific warm pool. The experiment consists of ensemble extended serial forecasts including winter and summer ISO cases. The forecasts are compared with the ERA-40 analyses. The analysis focuses on understanding the origin of forecast errors by studying the vertical structure of relevant dynamical and moist convective features associated with the ISO. The useful forecast time scale for circulation anomalies is in average 13 days during winter compared to 7–8 days during summer. The forecast skill is not stationary and presents evidence of a flow-dependent nature, with states of the coupled system corresponding to long-lived convective envelopes associated with the ISO for which the skill is always low regardless of the starting date of the forecast. The model is not able to forecast skillfully the generation of specific humidity anomalies and results indicate that the convective processes in the model are associated with the erosion of the ISO forecast skill in the model. Circulation-associated anomalies are forecast better than moist convective associated anomalies. The model tends to generate a more stable atmosphere, limiting the model’s capability to reproduce deep convective events, resulting in smaller humidity and circulation anomalies in the forecasts compared to those in ERA-40.  相似文献   

9.
The limits of predictability of El Niño and the Southern Oscillation (ENSO) in coupled models are investigated based on retrospective forecasts of sea surface temperature (SST) made with the National Centers for Environmental Prediction (NCEP) coupled forecast system (CFS). The influence of initial uncertainties and model errors associated with coupled ENSO dynamics on forecast error growth are discussed. The total forecast error has maximum values in the equatorial Pacific and its growth is a strong function of season irrespective of lead time. The largest growth of systematic error of SST occurs mainly over the equatorial central and eastern Pacific and near the southeastern coast of the Americas associated with ENSO events. After subtracting the systematic error, the root-mean-square error of the retrospective forecast SST anomaly also shows a clear seasonal dependency associated with what is called spring barrier. The predictability with respect to ENSO phase shows that the phase locking of ENSO to the mean annual cycle has an influence on the seasonal dependence of skill, since the growth phase of ENSO events is more predictable than the decay phase. The overall characteristics of predictability in the coupled system are assessed by comparing the forecast error growth and the error growth between two model forecasts whose initial conditions are 1 month apart. For the ensemble mean, there is fast growth of error associated with initial uncertainties, becoming saturated within 2 months. The subsequent error growth follows the slow coupled mode related the model’s incorrect ENSO dynamics. As a result, the Lorenz curve of the ensemble mean NINO3 index does not grow, because the systematic error is identical to the same target month. In contrast, the errors of individual members grow as fast as forecast error due to the large instability of the coupled system. Because the model errors are so systematic, their influence on the forecast skill is investigated by analyzing the erroneous features in a long simulation. For the ENSO forecasts in CFS, a constant phase shift with respect to lead month is clear, using monthly forecast composite data. This feature is related to the typical ENSO behavior produced by the model that, unlike the observations, has a long life cycle with a JJA peak. Therefore, the systematic errors in the long run are reflected in the forecast skill as a major factor limiting predictability after the impact of initial uncertainties fades out.  相似文献   

10.
11.
Simulations of tropical intraseasonal oscillation(TISO) in SAMIL,the Spectral Atmospheric Model from the Institute of Atmospheric Physics(IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG) coupled and uncoupled general circulation models were comprehensively evaluated in this study.Compared to the uncoupled model,the atmosphere-ocean coupled model improved the TISO simulation in the following aspects:(1) the spectral intensity for the 30-80-day peak eastward periods was more realistic;(2) the eastward propagation signals over western Pacific were stronger;and(3) the variance distribution and stronger signals of Kelvin waves and mixed Rossby gravity waves were more realistic.Better performance in the coupled run was assumed to be associated with a better mean state and a more realistic relationship between precipitation and SST.In both the coupled and uncoupled runs,the unrealistic simulation of the eastward propagation over the equatorial Indian Ocean might have been associated with the biases of the precipitation mean state over the Indian Ocean,and the unrealistic split of maximum TISO precipitation variance over the Pacific might have corresponded to the exaggeration of the double Intertropical Convergence Zone(ITCZ) structure in precipitation mean state.However,whether a better mean state leads to better TISO activity remains questionable.Notably,the northward propagation over the Indian Ocean during summer was not improved in the mean lead-lag correlation analysis,but case studies have shown some strong cases to yield remarkably realistic northward propagation in coupled runs.  相似文献   

12.
13.
The first-branch northward-propagating intraseasonal oscillation (FNISO) over the tropical Indian Ocean (IO) often triggers the onset of the Asian summer monsoon. In this study we investigate the structures and mechanisms associated with FNISO through the diagnosis of ERA-Interim reanalysis data for the period of 1990–2009. A composite analysis is conducted to reveal the structure and evolution characteristics of the FNISO and associated background circulation changes. It is found that the FNISO convection originates from the southwestern IO and propagates eastward. After reaching the eastern IO, the major convective branch moves northward toward the northern Bay of Bengal (BoB). Two possible mechanisms may contribute to the northward propagation of the FNISO. One is the meridional asymmetry of the background convective instability. A greater background convective instability over the northern BoB may destabilize Rossby waves and cause convection to shift northward. The other is the meridional phase leading of perturbation humidity in the planetary boundary layer (PBL). Maximum PBL moisture appears to the north of the convection center, which promotes a convectively unstable stratification ahead of the convection and leads to the northward propagation of the FNISO. A PBL moisture budget analysis reveals that anomalous zonal advection is a dominant process in contributing to the moisture asymmetry.  相似文献   

14.
基于澳大利亚气象局发布的RMM(Real-time Multivariate Madden-Julian oscillation)指数,将热带大气季节内振荡划分为8个位相,统计分析了各位相西北太平洋台风生成频数和位置的变化特征,并进一步利用BDI(Box Difference Index)指数分析了台风生成的活跃和不活跃位相之间环境要素的差别。结果表明,相比于台风生成的不活跃位相(1、2、3位相),在利于台风生成的活跃位相(5、6、7位相)期间,环境场具有更强的低层辐合和高层辐散外流、更高的对流层中层相对湿度和更广的垂直切变较小区域。进一步研究表明,在台风生成的活跃和不活跃位相之间,大尺度环境场的差别主要体现在动力因子方面,尤其是低层辐合场。  相似文献   

15.
This work evaluates the skill of retrospective predictions of the second version of the NCEP Climate Forecast System (CFSv2) for the North Atlantic sea surface temperature (SST) and investigates the influence of El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) on the prediction skill over this region. It is shown that the CFSv2 prediction skill with 0–8 month lead displays a “tripole”-like pattern with areas of higher skills in the high latitude and tropical North Atlantic, surrounding the area of lower skills in the mid-latitude western North Atlantic. This “tripole”-like prediction skill pattern is mainly due to the persistency of SST anomalies (SSTAs), which is related to the influence of ENSO and NAO over the North Atlantic. The influences of ENSO and NAO, and their seasonality, result in the prediction skill in the tropical North Atlantic the highest in spring and the lowest in summer. In CFSv2, the ENSO influence over the North Atlantic is overestimated but the impact of NAO over the North Atlantic is not well simulated. However, compared with CFSv1, the overall skills of CFSv2 are slightly higher over the whole North Atlantic, particularly in the high latitudes and the northwest North Atlantic. The model prediction skill beyond the persistency initially presents in the mid-latitudes of the North Atlantic and extends to the low latitudes with time. That might suggest that the model captures the associated air-sea interaction in the North Atlantic. The CFSv2 prediction is less skillful than that of SSTA persistency in the high latitudes, implying that over this region the persistency is even better than CFSv2 predictions. Also, both persistent and CFSv2 predictions have relatively low skills along the Gulf Stream.  相似文献   

16.
本文采用美国台风联合警报中心整编的1981—2012年的best-track热带气旋资料、中国大陆743站逐日降水数据、亚太经合组织气候中心的北半球夏季季节内振荡(BSISO)指数和美国国家环境预报中心及大气研究中心的再分析资料,分析了中国东南部地区热带气旋暴雨特征及其与BSISO 8个位相的联系。结果表明:7、8月,中国东南沿海地区的热带气旋暴雨发生的频次最多,多个站点热带气旋暴雨占总暴雨频次的比例达40%以上。7、8月热带气旋暴雨主要发生于BSISO1的第1、2、7、8位相,发生的暴雨频次占总频次的78.4%,主要分布于福建省沿海地区和西南部;BSISO2的第5、6、7位相热带气旋暴雨发生的频次也较多,占总频次的73.6%,主要分布于福建省沿海地区及西南部和广东省西南沿海地区。对发生较多热带气旋暴雨的BSISO1和BSISO2位相背景下的环流合成异常的诊断显示,西北太平洋伸向中国东南沿海地区,大尺度引导气流为显著的异常东风带,有利于热带气旋登陆中国大陆;显著异常的纬向东风切变、气旋性相对涡度和整层水汽的异常辐合,有利于热带气旋登陆过程强度的维持,促使热带气旋暴雨发生在中国大陆。  相似文献   

17.
 In this study, satellite-derived outgoing longwave radiation (OLR) and the reanalysis from the National Centers for Environmental Prediction/National Center for Atmospheric Research are used as verification data in a study of intraseasonal variability in the Goddard Laboratory for Atmospheres (GLA) and the United Kingdom Meteorological Office (UKMO) atmospheric general circulation models. These models simulated the most realistic intraseasonal oscillations (IO) of the 15 Atmospheric Model Intercomparison Project models previously analyzed. During the active phase of the intraseasonal oscillation, convection is observed to migrate from the Indian Ocean to the western/central Pacific Ocean, and into the South Pacific Convergence Zone (SPCZ). The simulated convection, particularly in the GLA model, is most realistic over the western/central Pacific Ocean and the SPCZ. In the reanalysis, the baroclinic structure of the IO is evident in the eddy-stream function, and eastward migration of the anticyclone/cyclone pairs occurs in conjunction with the eastward development of convection. Both the GLA and UKMO models exhibit a baroclinic structure on intraseasonal time scales. The GLA model is more realistic than the UKMO model at simulating the eastward migration of the anticyclone/cyclone pairs when the convection is active over the western/central Pacific. In the UKMO model, the main heating is located off the equator, which contributes to the irregular structures seen in this model on intraseasonal time scales. The maintenance and initiation of the intraseasonal oscillation has also been investigated. Analysis of the latent heat flux indicates that evaporative wind feedback is not the dominant mechanism for promoting the eastward propagation of the intraseasonal oscillation since evaporation to the west of the convection dominants. The data suggest a wave-CISK (conditional instability of the secondkind) type mechanism, although the contribution by frictional convergence is not apparent. In the GLA model, enhanced evaporation tends to develop in-place over the west Pacific warm pool, while in the UKMO simulation westward propagation of enhanced evaporation is evident. It is suggested that lack of an interactive ocean may be associated with the models systematic failure to simulate the eastward transition of convection from the Indian Ocean into the western Pacific Ocean. This hypothesis is based upon the examination of observed sea surface temperature (SST) and its relationship to the active phase of the intraseasonal oscillation, which indicates that the IO may evolve as a coupled ocean-atmosphere mode. The eastward propagation of convection appears to be related to the gradient of SST, with above normal SST to the east of the convection maintaining the eastward evolution, and decreasing SST near the western portion of the convective envelope being associated with the cessation of convection. Received: 13 September 1996/Accepted: 14 April 1997  相似文献   

18.
Yamaura  Tsuyoshi  Kajikawa  Yoshiyuki 《Climate Dynamics》2017,48(9-10):3003-3014

A decadal change in activity of the boreal summer intraseasonal oscillation (BSISO) was identified at a broad scale. The change was more prominent during August–October in the boreal summer. The BSISO activity during 1999–2008 (P2) was significantly greater than that during 1984–1998 (P1). Compared to P1, convection in the BSISO was enhanced and the phase speed of northward-propagating convection was reduced in P2. Under background conditions, warm sea surface temperature (SST) anomalies in P2 were apparent over the tropical Indian Ocean and the western tropical Pacific. The former supplied favorable conditions for the active convection of the BSISO, whereas the latter led to a strengthened Walker circulation through enhanced convection. This induced descending anomalies over the tropical Indian Ocean. Thermal convection tends to be suppressed by descending anomalies, whereas once an active BSISO signal enters the Indian Ocean, convection is enhanced through convective instability by positive SST anomalies. After P2, the BSISO activity was weakened during 2009–2014 (P3). Compared to P2, convective activity in the BSISO tended to be inactive over the southern tropical Indian Ocean in P3. The phase speed of the northward-propagating convection was accelerated. Under background conditions during P3, warmer SST anomalies over the maritime continent enhance convection, which strengthened the local Hadley circulation between the western tropical Pacific and the southern tropical Indian Ocean. Hence, the convection in the BSISO over the southern tropical Indian Ocean was suppressed. The decadal change in BSISO activity correlates with the variability in seasonal mean SST over the tropical Asian monsoon region, which suggests that it is possible to predict the decadal change.

  相似文献   

19.
Daily output from the hindcasts by the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) is analyzed to understand the skill of forecasting atmospheric variability on quasi-biweekly (QBW) time scale. Eight dominant quasi-biweekly oscillation (QBWO) modes identified by the extended empirical orthogonal function analysis are focused. In the CFSv2, QBW variability exhibits a significant weakening tendency with lead time for all seasons. For most QBWO modes, the variance drops to only 50 % of the initial value at lead time of 11–15 days. QBW variability has better prediction skill in the winter hemisphere than in the summer hemisphere. Skillful forecast can reach about 10–15 days for most modes but those in the winter hemisphere have better forecast skills. Among the eight QBWO modes, the North Pacific mode and the South Pacific (SP) mode have the highest forecast skills while the Asia–Pacific mode and the Central American mode have the lowest skills. For the Asia–Pacific and Central American modes, the forecasted QBWO phase shows an obvious eastward shift with increase in lead time compared to observations, indicating a smaller propagating speed. However, the predicted feature for the SP mode is more realistic. Air–sea coupling on the QBW time scale is perhaps responsible for the different prediction skills for different QBWO modes. In addition, most QBWO modes have better forecasting skills in El Niño years than in La Niña years. Different dynamical mechanisms for various QBWO modes may be partially responsible for the differences in prediction skill among different QBWO modes.  相似文献   

20.
本文通过分析比较SINTEX-F海气耦合模式两组试验(一组是热带海洋大气和海洋完全耦合,一组是除了印度洋外,其它海洋有海气耦合)模拟结果,研究冬季印度洋海气耦合对季节内振荡(MJO)向东传播的影响。当冬季印度洋有海气耦合时,海温异常的非对称分布会加强沿着5°S-10°S纬带上的向东传播的MJO。当暖的海温总是出现在对流的东侧时,其会导致边界层异常辐合,使得水汽增加,有利于对流向东传播。另外,冬季印度洋海温的年际变化可以调制海气耦合对东传MJO的影响效果,负(正)印度洋偶极子年和正(负)印度洋海盆年海气耦合对MJO起了增强(减弱)的作用。这主要是印度洋海温的年际变化可以导致背景风场的变化,通过风-海温-蒸发反馈机制,增加或减少水汽的纬向非对称性,进而增强或减弱MJO的向东传播。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号