首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
烈度分布的几何特征和震源参数的估计   总被引:1,自引:0,他引:1       下载免费PDF全文
本文在考虑环境刚度效应和非匀阻效应的情况下,采用椭圆形震源简化模型,研究了走滑断层的地震烈度几何要素与震源参数之间的关系,初步建立了估计断层有效发震段长度、错动角、应力降和错动距离等参数的等震线法,并结合唐山、通海、炉霍和永善等震例进行了试算  相似文献   

2.
环境刚度效应——影响震源应力降的重要因素   总被引:1,自引:0,他引:1       下载免费PDF全文
固体围压岩石三轴实验和理论分析表明,震源环境刚度(包括轴压系统和围压系统刚度)是影响应力降的重要因素。在三轴实验条件下,轴向应力降和围压系统刚度呈双曲线关系,前者随后者的增大而减小。实验应力降显著偏大的基本原因之一在于环境刚度效应。地壳内震源应力降△τ=2λ[(S_s—S_k)+(μ_s—μ_kσ_(n.0)],λ为震源的力学环境因数,主要取决于环境刚度和应力场方向。如果滑移过程中正压力大小和主应力方向无明显变化,则λ大致为0—0.9  相似文献   

3.
利用遗传算法,搜索符合Brune ω^2模型的拐角频率(fc)及零频幅值(Ωc)的最佳值,测定浙江珊溪水库震区88条小震(1.5≤ML≤4.6)的地震矩(M0)、震源尺度(r)及静态应力降(△σ)。地震矩M0在10^10~10^14N·m范围内,与拐角频率fc遵循Mo∝fc^-3的规律;震源尺度和地震矩、应力降之间呈现多重标度特征,地震矩大于临界值2.3×10^12N·m(相应的震源尺度特征值约160m)时,震源尺度与地震矩的关系较强;而应力降(△σ)在震源尺度大于160m后基本趋向恒定,不随震源尺度的增大而增大。浙江珊溪水库震区自2002年7月以来,经历2次大规模的震群活动。震群释放的应力降大小与该震群的规模成正比关系,大的应力降集中在发震断层中段5~6km深度的区域,其发生时间既可以在主震之前,也可以在主震之后。  相似文献   

4.
震源错动带端部的刚度效应   总被引:1,自引:0,他引:1       下载免费PDF全文
本文通过震源简化模型的分析表明,震源的环境刚度(包括轴向、侧向和错动带端部刚度)是影响发震的重要因素。除强度条件外,环境刚度条件是发震的另一必要条件。在考虑环境刚度效应的情况下,震源平均应力降的数量级有可能小于10~2甚至10~1 MPa,在较高围压下产生较低的应力降。文中还讨论了区分两类闭锁部的必要性,指出错动带上的闭锁部有的是潜在的“震核”,有的则作为“端部”,阻碍发震;液体渗入震源体的不同部位可能引起两种相反的作用,诱发或抑制强震的发生。同时还讨论了环境刚度的几何参数和烈度分布之间的关系。  相似文献   

5.
2018年7月10日河南固始发生ML 4.0地震,为区域4级地震平静长达18年背景下的一次显著事件。为分析此次地震震源破裂性质和发震构造特征,采用Snoke方法计算震源机制解,结果显示,震源错动类型以正断为主兼具走滑,其中节面Ⅰ:走向127.0°,倾角75.0°,滑动角-78.0°;节面Ⅱ:走向268.0°,倾角19.0°,滑动角-128.0°,且节面Ⅰ性质与淮滨断裂破裂特征和切错方式符合;采用震源谱拟合计算得到此次地震应力降为2.756 MPa,固始及邻区ML 2.5-4.0地震应力降普遍小于3 MPa,且与震级存在一定正相关关系。  相似文献   

6.
2008年5月12日四川汶川8.0级地震前后震源区应力水平估计   总被引:8,自引:0,他引:8  
根据地震力学和数字地震学理论,利用视应力和应力降,估算了2008年5月12日四川汶川MS8.0级地震前后震源区的应力水平,结果表明,震前震源区应力值约为1.5~2.0MPa,地震破裂过程中,由于断层发生错动过头,使地震发生后震源区应力低于动摩擦力,降至-1.2~-0.1MPa。  相似文献   

7.
景泰6.2级地震震源动力学过程<   总被引:1,自引:0,他引:1       下载免费PDF全文
杜学彬  阎志德 《地震学报》1994,16(3):296-303
根据景泰6.2级地震前地电阻率变化和国内地震台网单台震级测定值的空间方位性, 研究了本次地震震源动力学过程。得到:本次地震震前3-5个月震源区NW-SE向(或与此方向大致相同)拉张应力增强, 约震前20余天张应力进一步增强, 最终导致近EW向断层发生NWW-SEE向错动。这一错动方式引起震中NWW和SEE方向的地震观测台接收到强地面振动, 而震中NE和正南方向的台接收到相对弱的地面振动。最后阐述了关于地电阻率短临地震预报的认识。   相似文献   

8.
震源断层的长度和错动幅度是震源参数中两个重要的量,寻找它们在震前的指标对地震预报具有要重的意义。这两个量的比值代表了地下断层错动的协调性,因此有助于了解震源环境。本文通过对中国、日本、美国三地区的大震断层资料的处理,得到了震源断层的长度与错动幅度之间近似地存在着线性关系的结论,震源断层的错动幅度是其长度的10~(-5)数量级。另外,本文根据地震过程中震源断层的长度与错动幅度之间的协调关系,讨论了1976年唐山地震前的断层蠕滑问题,以及郯庐断裂带上几百公里的水平错距是否可能的问题。  相似文献   

9.
1992兰德斯地震震源处应力量值的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
盛书中  万永革 《地震学报》2011,33(4):420-430
给出了根据地震前后应力轴偏转、地震应力降和地震前后相对主应力大小,计算震源处应力量值的方法.并将该方法运用于兰德斯地震的霍姆斯特德谷断层段,获得了该子断层10 km深度处震前最大、中间和最小主应力的量值分别为271,266 MPa和259 MPa;震前断层面上的正应力和剪切应力分别为265MPa和6.2 MPa;震后断...  相似文献   

10.
2011年4月10日四川省炉霍县发生了Ms5.3级地震,利用这次地震的观测数据,采用了CAP、TDMT-INVC和Snoke三种方法,研究不同解算方法得到的此次地震震源机制解结果。结果显示:(1)三种方法计算出的震源机制解参数基本一致,说明三种方法求解结果是稳定、可靠的。(2)计算得到的地震矩震级Mw为5.2;节面I的参数为:走向45°,倾角84°,滑动角-160°;节面Ⅱ的参数为:走向313°,倾角70°,滑动角-6°;P轴方位角271°,仰角18°;T轴方位角177°,仰角10°;发震断层属于走滑型略兼正倾滑分量性质。(3)最佳拟合震源深度为11 km,与该区域的优势发震层位深度比较一致。(4)该次地震震源机制解节面II参数与震中附近鲜水河断裂带的产状较为相同,主压应力方向与区域应力方向也比较一致,这些说明此次地震是鲜水河断裂左旋走滑错动的结果。  相似文献   

11.
运用走滑地震造成的地震前后应力方向偏转和地震应力降Δτ推导得到地震震源处偏应力量值τ的解析表达式为τ=[Δτcos2(φ′[KG-*2]P-E)]/sin2(φ′[KG-*2]P-φP)(其中,φ\-P和φ′[KG-*2]P分别为地震前后的统计P轴走向,E为地震断层走向.).当震前P轴与震后P轴与断层走向夹角为45°时,该公式失效.对偏应力值与应力降比值随应力场主压应力轴与断层走向夹角及应力场主压应力轴偏转的变化进行分析表明,相同应力降造成的应力轴偏转越大,地下偏应力越小; 断层走向越接近主压应力轴方向,地震应力降场对偏应力场的贡献越小.将该方法运用于Landers地震震源区,求得了该地震Homestead Valley段的偏应力量值为10MPa.  相似文献   

12.
利用数字化地震资料,对玉树地区2006年5.0、5.6级和2010年7.1级地震的震源机制解、尾波Q值、波速比及应力降等进行了对比研究,结果表明2010年玉树7.1级地震为走滑型与该地区历史地震的震源机制一致。2个地震序列的尾波Q值、波速比和应力降存在明显的不同,特别是玉树7.1级地震前的Ms4.7级地震出现显著差异,应力降值在地震序列的活跃、平静段表现出不同的特征。  相似文献   

13.
求解鹤岗强矿震震源机制解结果,表现出走滑伴随逆断层和正断层活动、非双力偶型的多样性。两组节面优势分布方向和节面的倾角优势分布不显著,两者分布无明显规律,反映出矿井下破裂面比较复杂。矿震震源主压应力释放优势方向北西310°左右,优势倾角为25°~60°;主张应力轴走向NE,主张应力场优势方向为北东60°左右,仰角在30~70°之间;中等应力轴(N)近于垂直,优势倾角为70~90°。矿震震源机制解显示的矿区最大主应力方向与区域构造应力场的最大主应力方向近似正交,矿震震源机制主应力轴优势倾角远大于区域构造地震,反映的是矿区采煤生产的次生构造应力环境重力应力场的贡献明显。  相似文献   

14.
云南耿马7.2级地震地表破裂带研究   总被引:2,自引:1,他引:2       下载免费PDF全文
根据野外考察的实际资料,本文介绍了耿马7.2级地震地表破裂带的展布,结构要素及组合、位移分布等情况。同时依据位错资料对破裂带的应力活动及断裂两盘的运动状态进行了初步分析。认为本次地震发震构造以右旋走滑为主兼具张性,主压应力优势方位为N5°—10°E。断层两盘相对运动的总体方向为N55°W左右,断层运动的滑移角在30°—40°之间  相似文献   

15.
利用有限元法,建立具有黏弹性力学参数的断层接触对,采用对比分析的方法,通过改变雁列断层的几何间距和黏滞系数,分析影响雁列断层构造应力场的因素和分布状态,模拟出雁列断层在失稳过程中,地震所产生的应力降和应力应变等以及第一、第二、第三主应力与断层之间的角度关系等。  相似文献   

16.
On August 8, 2017, a strong earthquake of M7.0 occurred in Jiuzhaigou County, Aba Prefecture, northern Sichuan. The earthquake occurred on a branch fault at the southern end of the eastern section of the East Kunlun fault zone. In the northwest of the aftershock area is the Maqu-Maqin seismic gap, which is in a locking state under high stress. Destructive earthquakes are frequent along the southeast direction of the aftershocks area. In Songpan-Pingwu area, only 50~80km away from the Jiuzhaigou earthquake, two M7.2 earthquakes and one M6.7 earthquake occurred from August 16 to 23, 1976. Therefore, the Jiuzhaigou earthquake was an earthquake that occurred at the transition part between the historical earthquake fracture gap and the neotectonic active area. Compared with other M7.0 earthquakes, there are few moderate-strong aftershocks following this Jiuzhaigou earthquake, and the maximum magnitude of aftershocks is much smaller than the main shock. There is no surface rupture zone discovered corresponding to the M7.0 earthquake. In order to understand the feature of source structure and the tectonic environment of the source region, we calculate the parameters of the initial earthquake catalogue by Loc3D based on the digital waveform data recorded by Sichuan seismic network and seismic phase data collected by the China Earthquake Networks Center. Smaller events in the sequence are relocated using double-difference algorithm; source mechanism solutions and centroid depths of 29 earthquakes with ML≥3.4 are obtained by CAP method. Moreover, the source spectrum of 186 earthquakes with 2.0≤ML≤5.5 is restored and the spatial distribution of source stress drop along faults is obtained. According to the relocations and focal mechanism results, the Jiuzhaigou M7.0 earthquake is a high-angle left-lateral strike-slip event. The earthquake sequence mainly extends along the NW-SE direction, with the dominant focal depth of 4~18km. There are few shallow earthquakes and few earthquakes with depth greater than 20km. The relocation results show that the distribution of aftershocks is bounded by the M7.0 main shock, which shows obvious segmental characteristics in space, and the aftershock area is divided into NW segment and SE segment. The NW segment is about 16km long and 12km wide, with scattered and less earthquakes, the dominant focal depth is 4~12km, the source stress drop is large, and the type of focal mechanism is complicated. The SE segment is about 20km long and 8km wide, with concentrated earthquakes, the dominant depth is 4~12km, most moderate-strong earthquakes occurred in the depth between 11~14km. Aftershock activity extends eastward from the start point of the M7.0 main earthquake. The middle-late-stage aftershocks are released intensively on this segment, most of them are strike-slip earthquakes. The stress drop of the aftershock sequence gradually decreases with time. Principal stress axis distribution also shows segmentation characteristics. On the NW segment, the dominant azimuth of P axis is about 91.39°, the average elevation angle is about 20.80°, the dominant azimuth of T axis is NE-SW, and the average elevation angle is about 58.44°. On the SE segment, the dominant azimuth of P axis is about 103.66°, the average elevation angle is about 19.03°, the dominant azimuth of T axis is NNE-SSW, and the average elevation angle is about 15.44°. According to the fault profile inferred from the focal mechanism solution, the main controlling structure in the source area is in NW-SE direction, which may be a concealed fault or the north extension of Huya Fault. The northwest end of the fault is limited to the horsetail structure at the east end of the East Kunlun Fault, and the SE extension requires clear seismic geological evidence. The dip angle of the NW segment of the seismogenic fault is about 65°, which may be a reverse fault striking NNW and dipping NE. According to the basic characteristics of inverse fault ruptures, the rupture often extends short along the strike, the rupture length is often disproportionate to the magnitude of the earthquake, and it is not easy to form a rupture zone on the surface. The dip angle of the SE segment of the seismogenic fault is about 82°, which may be a strike-slip fault that strikes NW and dips SW. The fault plane solution shows significant change on the north and south sides of the main earthquake, and turns gradually from compressional thrust to strike-slip movement, with a certain degree of rotation.  相似文献   

17.
2009年云南姚安6.0级地震震源机制与发震构造的分析研究   总被引:1,自引:0,他引:1  
利用P波、SV波、SH波初动及其振幅比联合反演震源机制解的方法,计算了2009年7月9日发生在云南姚安6.0级地震余震序列的震源机制解,同时结合地震序列的空间分布,对姚安6.0级地震的发震断层性质和震区应力场特征进行综合分析。结果分析表明:(1)姚安6.0级地震发震断层为NWW—SEE向的直立右旋走滑断层,与美国哈佛大学的主震CMT解节面基本一致,也与余震优势方向分布一致,证明结果可靠;(2)震区主压应力场优势方向为NNW—SSE向,与其现今区域构造应力场主压应力NNW—SSE向一致,表明主震应力场主要受到现今区域构造应力场的控制,同时还有一些小的余震与主震应力场不同,表明震区应力场的多样性和复杂性;(3)结合本次地震序列的空间分布、震源机制解特征、震区断裂构造特征综合分析,综合判定姚安6.0级地震的发震构造属于马尾箐断裂。  相似文献   

18.
Seismological approaches used in earthquake prediction involve many subjects. To predict large earthquakes from small to moderate foreshocks has a clear meaning in physics. Some of the main methods of earthquake prediction used in China are outlined in this paper. According to the anomalies used for earthquake prediction, seismological approaches can be divided into two groups: those that use the anomalies in seismic patterns, including the increase and decrease in regional seismicity, the appearance of seismic gaps, seismic belts, seismic swarms, and foreshocks and those that use anomalies in special values and in seismic waves, such as the anomalies in b values and f values, in the Vp/VS ratio, Q values, stress drop, and shear stress.  相似文献   

19.
李君  王勤彩  郑国栋  刘庚  周辉  周聪 《地震学报》2019,41(2):207-218
利用双差定位方法对2018年松原MS5.7地震序列中ML≥1.0地震重新定位,之后使用CAP方法求解松原MS5.7地震序列中强地震的震源机制解,再借助MSATSI软件包反演得到松原地区的区域应力场。综合分析以上研究结果得到如下结论:① 松原MS5.7地震序列发生在NW走向的第二松花江断裂与NE走向的扶余—肇东断裂交会处,将地震精定位结果沿两条断层走向作剖面分析,NW向剖面主轴长度约为5 km,震中分布均匀,NE向剖面主轴长度亦约为5 km,震中呈倾向NE的高倾角分布;② 该序列中的4次ML≥3.7地震的震源机制解具有良好的一致性:节面Ⅰ走向为NE向,节面Ⅱ走向为NW向,均为高倾角走滑断层。中强地震的震源机制节面解与第二松花江断裂性质基本一致,由此推断第二松花江断裂是本次松原地震的发震断层;③ 松原地区的主压应力方位角为N86°E,倾角为7°,主张应力方位角为N24°E,倾角为71°。松原地区的区域应力场既受到大尺度的板块构造运动的控制,又受到区域构造运动的影响。在太平洋板块对北东亚板块向西俯冲作用下,东北地区产生了近EW向的主压应力,受周边地质构造控制,松辽盆地内NE向断裂与NW向断裂交会处易发生走滑型地震,2018年松原MS5.7地震正是在这种构造作用控制下发生的中强地震。   相似文献   

20.
Using the focal mechanism solutions of 24 moderately strong earthquakes in the northern Tianshan area, we carried out system cluster and stress field inversion analysis. The result indicates that, the focal mechanism solutions of moderately strong earthquakes are mainly dipslip reverse faulting in the northern Tianshan area. The principal rupture planes of earthquakes are NW-oriented. It is basically consistent with the strike of earthquake structure in its adjacent area. The direction of the principal compression stress P axis is nearly NS, and its inclination angle is small; while the inclination angle of the principal extensional stress T axis is large. It shows that the regional stress field is mainly controlled by the near-NS horizontal compressive stress. The direction of the maximum principal stress shows a gradation process of NNE-NS-NW from east to west.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号