首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wulipo landslide, triggered by heavy rainfall on July 10, 2013, transformed into debris flow,resulted in the destruction of 12 houses, 44 deaths, and 117 missing. Our systematic investigation has led to the following results and to a new understanding about the formation and evolution process of this hazard. The fundamental factors of the formation of the landslide are a high-steep free surface at the front of the slide mass and the sandstone-mudstone mixed stratum structure of the slope. The inducing factor of the landslide is hydrostatic and hydrodynamic pressure change caused by heavy continuous rainfall. The geological mechanical model of the landslide can be summarized as "instability-translational slide-tension fracture-collapse" and the formation mechanism as "translational landslide induced by heavy rainfall". The total volume of the landslide is 124.6×104 m3, and 16.3% of the sliding mass was dropped down from the cliff and transformed into debris flow during the sliding process, which enlarged 46.7% of the original sliding deposit area. The final accumulation area is found to be 9.2×104 m2. The hazard is a typical example of a disaster chain involving landslide and its induced debris flow. The concealment and disaster chain effect is the main reason for the heavy damage. In future risk assessment, it is suggested to enhance the research onpotential landslide identification for weakly intercalated slopes. By considering the influence of the behaviors of landslide-induced debris flow, the disaster area could be determined more reasonably.  相似文献   

2.
The Wenchuan Ms 8.0 earthquake on May 12, 2008 induced a huge number of landslides. The distribution and volume of the landslides are very important for assessing risks and understanding the landslide - debris flow - barrier lake - bursts flood disaster chain. The number and the area of landslides in a wide region can be easily obtained by remote sensing technique, while the volume is relatively difficult to obtain because it requires some detailed geometric information of slope failure surface and sub-surface. Different empirical models for estimating landslide volume were discussed based on the data of 107 landslides in the earthquake-stricken area. The volume data of these landslides were collected by field survey. Their areas were obtained by interpreting remote sensing images while their apparent friction coefficients and height were extracted from the images unifying DEM (digital elevation model). By analyzing the relationships between the volume and the area, apparent friction coefficients, and the height, two models were established, one for the adaptation of a magnitude scale landslide events in a wide range of region, another for the adaptation in a small scope. The correlation coefficients (R2) are 0.7977 and 0.8913, respectively. The results estimated by the two models agree well with the measurement data.  相似文献   

3.
Stability analysis of the dam is important for disaster prevention and reduction. The dam's geometry plays an important role in understanding its stability. This study develops a rapid landslide dam geometry assessment method for both earthquake-induced and rainfall-induced landslide dams based on nine real cases collected in Chinese Taipei and 214 cases collected worldwide. For simplification purposes, a landslide dam is classified into triangular or trapezoidal. The rapid landslide dam geometry assessment method in this paper uses only satellite maps and the topographic maps to get landslide area, and then analyze the dam geometry. These maps are used to evaluate the area of the landslide and the slope of the river bed. Based on the evaluation information, the proposed method can calculate dam height, the length of the dam, and the angles of the dam in both upstream and downstream directions. These geometry parameters of a landslide dam provide important information for further dam stability analysis. The proposed methodology is applied to a real landslide dam case at Hsiaolin Village. The result shows that the proposed method can be used to assess the landslide dam geometry.  相似文献   

4.
1OVERFLOWBURSTOFMORAINELAKEFloodwater and debris flow caused by glacial lake burst is an important land process and a serious moun-tain disaster in glacial area. Glacial lakes with burst can divided into the glacier-obstructed lake (ice dam lake) and the terminal moraine lake (XU and FENG, 1988). Typical burst of ice dam lake happens in the modern glacier area of the upper reaches of the Kele-qing River in Uygur Autonomous Region of Xinjiang (WANG, 1990). But most of burst gla…  相似文献   

5.
Tropical cyclone(TC) Cempaka which occurred on 27–29 November 2017 has caused floods, landslides, and strong winds in certain areas of Java Island. Pacitan Regency was the most severely affected by TC Cempaka. The landslide frequency–area distribution curve of event inventory i.e. TC Cempaka can help to understand landslide susceptibility, hazard, vulnerability, and risk. Landslides were identified by using a local government database and by comparing pre-and post-event high-resolution satellite imageries. Field investigation was carried out in March 2018 to November 2018 to verify the landslide location and update the information. Power law, inverse gamma, and double Pareto model were employed to describe the frequency–magnitude of landslide(mLS) triggered by TC Cempaka. The exponent β values of power law, inverse gamma, and double Pareto were 2.6±0.28(fitted for 8.5% of dataset), 2.2±0.08(fitted for 83% of dataset), and 2.3±0.09(best fitted for dataset), respectively. The P-values were 0.51, 0.67, and 0.91 for power law, inverse gamma, and double Pareto, respectively. This study revealed that rollover occurred at 200 and 300 m2 for double Pareto and inverse gamma, respectively. The cutoff points totaled 1096.49 ± 236.44 and 7235.4 ± 1896.7 m2 for double Pareto and power law, respectively. Rollover phenomenon was real and existed in the dataset because it was far from the minimum resolvable size of the landslide that the authors can delineate from the satellite images. mLS for Pacitan was distributed at around 2 to 4. The magnitude of large landslides was 3.2, that of medium landslides was less than 3, and that of small landslides was almost 4. Numerical estimation calculated a fixed mLS=3.01. Comparison analysis of β values obtained from several landslide inventories triggered by heavy rainfall suggests that the variability of β is related to the intensity and duration of rainfall. Triggering events, such as intensity and duration of rainfall, affect the proportion of large landslides that occur in an area. More complete landslide inventories and rainfall data or other landslide triggering factors from other areas are required for further relationship analysis between the β value and landslide triggering factors.  相似文献   

6.
Tangjiashan landslide is a typical high-speed consequent landslide of medium-steep dip angle. This landslide triggered by earthquake took place in about semi-minute. The relative sliding displacement is 900 meters, so average sliding speed is about 30 meters per second. The longitudinal length of barrier dam which is formed by high-speed landslide along river is 803.4 meters; and maximum width crossing river is 611.8 meters. And its volume is estimated about 20.37 million steres. Through detailed geological investigation of the barrier dam, together with early geological information before earthquake, geological structures of the barrier dam and its stability of upstream and downstream slopes are studied when water level reaches different elevations in condition of continual after shocks with seismic intensity of 7 or 8 Richter scale. On this basis, dam-breaking mode of barrier dam is discussed deeply. Thereby, analytic results provide significant guidance and advices to front headquarters of Tangjiashan barrier dam, so that some proper engineering measures can be implemented and flood discharge can be carried out well.  相似文献   

7.
High-speed landslide is a catastrophic geological disaster in the mountainous area of southwest China. To predict the movement process of landslide reactivation in Chenjiaba town, Beichuan county, Sichuan province, China, we simulated the movement process of two landslide failures in Chenjiaba via rapid mass movement simulation and unmanned aerial vehicle images(UAV), and obtained the movement characteristic parameters of the landslides. According to a back analysis, the most remarkable fitting rheological parameters were friction coefficient(μ=0.18) and turbulence(). The parameter of landslide pressure was applied as the zoning index of landslide hazard to obtain the influence zone and hazard zoning map of the Chenjiaba landslide. Results show that the Duba River was blocked quickly with a landslide accumulation at the maximum height of 44.14 mwhen the Chenjiaba deposits lost stability. The hazard zoning map indicated that the landslide hazard degree is positively correlated with the slope.This landslide assessment is a quantitative hazard assessment method based on a landslide movement process and is suitable for high-speed landslide. Such method can provide a scientific basis for urban construction and planning in the landslide hazard area to avoid hazards effectively.  相似文献   

8.
《山地科学学报》2021,18(9):2412-2426
Whereas loess-mudstone landslides are widely distributed and frequently occurred at the loess Plateau, this type of landslides is hard to detect due to its particularity, and easily generates serious losses. To clarify the shear characteristics and formation mechanism of loess-mudstone landslides, field investigations, ring shear tests and numerical simulation analyses were performed on the loess specimens collected from the Dingjiagou landslide in Yan'an city, China. The test results showed that both the peak strength and residual strength of slip zone soils have a decreasing tendency with moisture content, while the increasing of normal stress caused an increase in the shear strength. These phenomena indicate that the rise in the moisture content induced by precipitation or the decreasing of normal stress due to excavation activities would result in the weakening of slip zone soils. Numerical simulations of the evolution process of slope failure using the finite element method were conducted based on the Mohr–Coulomb criterion. It was found that the heavy precipitation played a more important role in the slope instability compared with the excavation. In addition, the field investigation showed that loess soils with well-developed cracks and underlying mudstone soils provide material base for the formation of loess-mudstone landslides. Finally, the formation mechanism of this type of landslides was divided into three stages, namely, the local deformation stage, the penetration stage, the creeping-sliding stage. This study may provide a basis for understanding the sliding process of loess-mudstone landslides, as well as guidelines for the prevention and mitigation of loess-mudstone landslides.  相似文献   

9.
Outburst floods caused by breaches of landslide dams may cause serious damages and loss of lives in downstream areas; for this reason the study of the dynamic of the process is of particular interest for hazard and risk assessment. In this paper we report a field-scale landslide dam failure experiment conducted in Nantou County, in the central of Taiwan.The seismic signal generated during the dam failure was monitored using a broadband seismometer and the signal was used to study the dam failure process.We used the short-time Fourier transform(STFT) to obtain the time–frequency characteristics of the signal and analyzed the correlation between the power spectrum density(PSD) of the signal and the water level. The results indicate that the seismic signal generated during the process consisted of three components: a low-frequency band(0–1.5 Hz), an intermediate-frequency band(1.5–10 Hz) and a highfrequency band(10–45 Hz). We obtained the characteristics of each frequency band and the variations of the signal in various stages of the landslide dam failure process. We determined the cause for the signal changes in each frequency band and its relationship with the dam failure process. The PSD sediment flux estimation model was used to interpret the causes of variations in the signal energy before the dam failure and the clockwise hysteresis during the failure. Our results show that the seismic signal reflects the physical characteristics of the landslide dam failure process. The method and equipment used in this study may be used to monitor landslide dams and providing early warnings for dam failures.  相似文献   

10.
Defining a basin under a critical state(or a self-organized criticality) that has the potential to initiate landslides,debris flows,and subsequent sediment disasters,is a key issue for disaster prevention.The Lushan Hot Spring area in Nantou County,Taiwan,suffered serious sediment disasters after typhoons Sinlaku and Jangmi in 2008,and following Typhoon Morakot in 2009.The basin’s internal slope instability after the typhoons brought rain was examined using the landslide frequency-area distribution.The critical state indices attributed to landslide frequency-area distribution are discussed and the marginally unstable characteristics of the study area indicated.The landslides were interpreted from Spot 5 images before and after disastrous events.The results of the analysis show that the power-law landslide frequency-area curves in the basin for different rainfall-induced events tend to coincide with a single line.The temporal trend of the rainfallinduced landslide frequency-area distribution shows 1/f noise and scale invariance.A trend exists for landslide frequency-area distribution in log-log space for larger landslides controlled by the historical maximum accumulated rainfall brought by typhoons.The unstable state of the basin,including landslides,breached dams,and debris flows,are parts of the basin’s self-organizing processes.The critical state of landslide frequency-area distribution could be estimated by a critical exponent of 1.0.The distribution could be used for future estimation of the potential landslide magnitude for disaster mitigation and to identify the current state of a basin for management.  相似文献   

11.
This case study is about a landslide that occurred after 4 days of heavy rainfall,in the morning of June 29,2012,in Cengong County,Guizhou Province of China,geographical coordinated 108°20′-109°03′E,27°09′-27°32′N,with an estimated volume of 3.3×106 m3.To fully investigate the landslide process and formation mechanism,detailed geotechnical and geophysical investigations were performed including borehole drilling,sampling,and laboratory tests coupled with monitoring of displacement.Also,a combined seepage-slope stability modeling was performed to study the behavior of the landslide.After the heavy rainfall event,the sliding process started in this area.The landslide development can be divided into different parts.The man-made fill area,spatially distributed in the south side of the landslide area with low elevations,slid first along the interface between the slope debris and the strongly weathered bedrock roughly in the EW direction.Consequently,due to severe lateral shear disturbance,the slope in the main sliding zone slid next towards the SW direction,along the sliding surface developed within the strongly weathered calcareous shale formation located at a depth of 25-35 m.This means it was a rainfall triggered deep-seated landslide.Finally,retrogressive failure of a number of upstream blocks occurred,which moved in more than one direction.The initial failure of the man-made fill area was the‘engine’of the whole instability framework.This artificial material with low permeability,piled up in the accumulation area of surface and sub-surface and destroyed the drainage capacity of the groundwater.The numerical modeling results agreed with the analysis results obtained from the laboratory and field investigations.A conceptual model is given to illustrate the formation mechanism and development process of the landslide.  相似文献   

12.
《山地科学学报》2020,17(3):686-708
Landslides in Tianshui Basin, Gansu Province, Northwest China, severely affect the local population and the economy;therefore,understanding their evolution and kinematics is of great interest for landslide risk assessment and prevention. However, there is no unified classification standard for the types of loess landslides in Tianshui.In this study, we explored the landslide distribution and failure characteristics by means of field investigation,remotesensinginterpretation,geological mapping, drilling exploration and shearwave velocity tests, and established a database of Tianshui landslides. Our analysis shows that shear zones in mudstone usually develop in weak intercalated layers. Landslides occur mainly along the West Qinling faults on slopes with gradients of 10° to 25° and on southeast-and southwest-facing slopes.These landslides were classified into five types: loess landslides, loess–mudstone interface landslides, loess flow-slides, loess–mudstone plane landslides and loess–mudstone cutting landslides. We discussed the evolution and failure process of each landslide type and analyzed the formation mechanism and motion characteristics of large-scale landslides. The analysis results show that the landslides in the study area are characterized by a gentle slope, long runout and high risk. The relationship between the runout L and the vertical drop H of the large-scale landslides in the study area is L 4 H. There are good correlations between the equivalent friction coefficient of largescale landslides and their maximum height, runout,area and volume. The sliding zone of large-scale landslides often develops in the bedrock contact zone or in a weak interlayer within mudstone. From microstructure analysis, undisturbed mudstone consists mainly of small aggregates with dispersed inter-aggregate pores, whereas sheared clay has a more homogeneous structure. Linear striations are well developed on shear surfaces, and the clay pores in those surfaces have a more uniform distribution than those in undisturbed clay.  相似文献   

13.
Influences of the Wenchuan Earthquake on sediment supply of debris flows   总被引:2,自引:2,他引:0  
The 5.12 Wenchuan Earthquake and the subsequent rainstorms induced a large number of landslides, which later were transformed into debris flows. To evaluate the effect of the earthquake on the sediment supply of debris flows, eight debris flow basins near Beichuan City, Sichuan Province, China were chosen as the study area. The area variations of the debris flow source after the Wenchuan Earthquake and the subsequent rainstorm are analyzed and discussed in this paper. Interpretations of aerial photographs (after the 5.12 Wenchuan Earthquake) and SPOT5 images (after the rainstorm event of September 24, 2008) as well as field investigations were compared to identify the transformation of landslide surface in the study area, indicating that the landslide area in the eight debris flow basins significantly increased. The loose sediment area on the channel bed increased after the rainstorm event. In order to estimate the relationship of the landslide area with the rainfall intensity in different return periods, a model proposed by Uchihugi was adopted. Results show that new landslide area induced by heavy rainfall with 50-year and 100-year return period will be 0.87 km2 and 1.67 km2, respectively. The study results show the Wenchuan earthquake had particular influences on subsequent rainfall-induced debris flow occurrence.  相似文献   

14.
Guizhou Karst Plateau is located at the center of the karst region in Asia, where landslides are a typical disaster. Affected by the local karst environment, the landslides in this region have their own characteristics. In this study, 3975 landslide records from inventories of the Guizhou karst plateau are studied. The geographical detector method is used to detect the dominant casual factor and predominant multi-factor combinations for the local landslides. The results show that landslides are prone to areas on slopes between 10° and 35°, of clay rock, in close proximity to gullies, and especially in areas of moderate vegetation, dryland, and mild rocky desertification. Continuous precipitation over 10 days has a great effect on landslide occurrence. Compared with the individual factors, the impact of two-factor interaction has greater explanatory power for landslide volume. The volume of earthquake-induced landslides is predominantly controlled by the interactions of faults and slopes, while that of humaninduced landslides is affected by the interactions of land cover and hydrological conditions. For rainfallinduced landslides, the dominant interactions vary in different regions. In the central karst basin, the interactions between faults and precipitation can explain over 90% of the variations in landslide volumes. In the southern hilly karst region, the interactions between lithology and slope can explain over 71% of the variations in landslide volume and those between fault and land-use can explain 50% of the variations of the landslide volumes in the northeastern mountainous karst region.  相似文献   

15.
《山地科学学报》2020,17(2):340-357
Bivariate statistical analysis of data-driven approaches is widely used for landslide susceptibility assessment, and the frequency ratio(FR) method is one of the most popular. However, the results of such assessments are dominated by the number of classes and bounds of landslide-related causative factors, and the optimal assessment is unknown. This paper optimizes the frequency ratio method as an example of bivariate statistical analysis for landslide susceptibility mapping based on a case study of the Caiyuan Basin, a region with frequent landslides, which is located in the southeast coastal mountainous area of China. A landslide inventory map containing a total of 1425 landslides(polygons) was produced, in which 70% of the landslides were selected for training purposes, and the remaining were used for validationpurposes. All datasets were resampled to the same 5 m × 5 m/pixel resolution. The receiver operating characteristic(ROC) curves of the susceptibility maps were obtained based on different combinations of dominating parameters, and the maximum value of the areas under the ROC curves(AUCs) as well as the corresponding optimal parameter was identified with an automatic searching algorithm. The results showed that the landslide susceptibility maps obtained using optimal parameters displayed a significant increase in the prediction AUC compared with those values obtained using stochastic parameters. The results also showed that one parameter named bin width has a dominant influence on the optimum. In practice, this paper is expected to benefit the assessment of landslide susceptibility by providing an easy-to-use tool. The proposed automatic approach provides a way to optimize the frequency ratio method or other bivariate statistical methods, which can furtherfacilitate comparisons and choices between different methods for landslide susceptibility assessment.  相似文献   

16.
Hazards in reservoirs and lakes arising from subaerial landslides causing impact waves(or ‘lake tsunamis’) are now well known, with several recent examples having been investigated in detail. The potential scale of such hazards was not widely known at the time of the Vaiont dam project in the 1950s and early 1960s, although a small wave triggered by a landslide at another new reservoir nearby in the Dolomites(northern Italy) drew the possible hazard to the attention of the Vaiont project’s manag...  相似文献   

17.
Debris flow is a common natural hazard in the mountain areas of Western China due to favorable natural conditions,and also exacerbated by mountainous exploitation activities.This paper concentrated on the characteristics,causes and mitigation of a catastrophic mine debris flow hazard at Longda Watershed in Songpan County,Sichuan Province,on 21 July 2011.This debris flow deposited in the front of the No.1 dam,silted the drainage channel for flood and then rushed into tailing sediment reservoir in the main channel and made the No.2 dam breached.The outburst debris flow blocked Fu River,formed dammed lake and generated outburst flood,which delivered heavy metals into the lower reaches of Fu River,polluted the drink water source of the population of over 1 million.The debris flow was characterized with a density of 1.87~2.15 t/m 3 and a clay content of less than 1.63%.The peak velocity and flux at Longda Gully was over 10.0~10.9 m/s and 429.0~446.0 m 3 /s,respectively,and the flux was about 700 m 3 /s in main channel,equaling to the flux of the probability of 1%.About 330,000m 3 solid materials was transported by debris flow and deposited in the drainage tunnel(120,000~130,000 m 3),the front of No.1 dam(100,000 m 3) and the mouth of the watershed(100,000~110,000 m 3),respectively.When the peak flux and magnitude of debris flow was more than 462 m 3 /s and 7,423 m 3,respectively,it would block Fu River and produce a hazard chain which was composed of debris flow,dammed lake and outburst flood.Furthermore,the 21 July large-scale debris flow was triggered by rainstorm with an intensity of 21.2 mm/0.5 h and the solid materials of debris flow were provided by landslides,slope deposits,mining wastes and tailing sediments.The property losses were mainly originated from the silting of the drainage tunnel for flash flood but not for debris flow and the irrational location of tailing sediment reservoir.Therefore,the mitigation measures for mine debris flows were presented:(1) The disastrous debris flow watershed should be identified in planning period and prohibited from being taken as the site of mining factories;(2) The mining facilities are constructed at the safe areas or watersheds;(3) Scoria plots,concentrator factory and tailing sediment reservoir are constructed in safe areas where the protection measures be easily made against debris flows;(4) The appropriate system and plan of debris flow mitigation including monitoring,remote monitoring and early-warning and emergency plan is established;(5) The stability of waste dump and tailing sediment reservoir are monitored continuously to prevent mining debris flows.  相似文献   

18.
Wudu County in northwestern China frequently experiences large-scale landslide events.High-magnitude earthquakes and heavy rainfall events are the major triggering factors in the region.The aim of this research is to compare and combine landslide susceptibility assessments of rainfalltriggered and earthquake-triggered landslide events in the study area using Geographical Information System(GIS) and a logistic regression model.Two separate susceptibility maps were produced using inventories reflecting single landslide-triggering events,i.e.,earthquakes and heavy rain storms.Two groups of landslides were utilized: one group containing all landslides triggered by extreme rainfall events between 1995 and 2003 and the other group containing slope failures caused by the 2008 Wenchuan earthquake.Subsequently,the individual maps were combined to illustrate the locations of maximum landslide probability.The use of the resulting three landslide susceptibility maps for landslide forecasting,spatial planning and for developing emergency response actions are discussed.The combined susceptibility map illustrates the total landslide susceptibility in the study area.  相似文献   

19.
Earthquake-induced potential landslides are commonly estimated using landslide susceptibility maps. Nevertheless, the fault location is not identified and the ground motion caused by it is unavailable in the map. Thus, potential coseismic landslides for a specific fault motion-induced earthquake could not be predicted using the map. It is meaningful to incorporate the fault location and ground motion characteristics into the landslide predication model. A new method for a specific fault motion-induced coseismic landslide prediction model using GIS (Geographic Information System) is proposed herein. Location of mountain ridges, slope gradients over 45 o , PVGA (Peak Vertical Ground Accelerations) exceeded 0.15 g, and PHGA (Peak Horizontal Ground Accelerations) exceeded 0.25 g of slope units were representing locations that initiated landslides during the 1999 Chi-Chi earthquake in Taiwan. These coseismic landslide characteristics were used to identify areas where landslides occurred during Meishan fault motion-induced strong ground motions in Chiayi County in Taiwan. The strong ground motion (over 8 Gal in the database, 1 Gal = 0.01 m/s 2 , and 1 g = 981 Gal) characteristics were evaluated by the fault length, site distance to the fault, and topography, and their attenuation relations are presented in GIS. The results of the analysis show that coseismic landslide areas could be identified promptly using GIS. The earthquake intensity and focus depth have visible effects on ground motion. The shallower the focus depth, the larger the magnitude increase of the landslides. The GIS-based landslide predication method is valuable combining the geomorphic characteristics and ground motion attenuation relationships for a potential region landslide hazard assessment and in disaster mitigation planning.  相似文献   

20.
Landslides produce large quantities of sediment deposits and reduce reservoir life. This study investigated landslides at the Shihmen Reservoir basin in Taiwan that were induced by Typhoon Sinlaku and Typhoon Jangmi in 2008. We formulate scaling relationships between landslide erosion volume and area and conclude that sediment budget can be estimated based on the easier-todetermine landslide erosion area. The methodologies applied for the investigation were geomorphological analysis through 5 m × 5 m digital terrain models(DTMs) of the basin created before and after the landslide events and spatial analysis through a geographic information system. The erosion area and volume of landslides were measured through the subtraction of DTMs produced before and after the events. Statistical analysis revealed that the landslide erosion frequency–magnitude distribution exhibited power-law behaviors with a scaling exponent of 2.15 for the frequency–area distribution and 1.66 for the frequency–volume distribution. This paper proposes different scaling relationships for different moving depths, and landslide erosion volumes were estimated on the basis of depth; thus, landslides of different scales can be distinguished to avoid errors in volume estimation. Two different scaling exponents are proposed: 1.21 for landslide erosions with depths of less than 2 m and 1.01 for landslide erosions with depths of more than 2 m. The proposed scaling relationships are practical for landslide erosion volume estimation by different depths according to the landslide area, and they can provide preliminary results for sediment budget planning in a reservoir basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号