首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
分析了2个耀斑事件。这2个耀斑事件都具有双带结构,并伴有耀斑环顶部位置的硬X射线(HXR)辐射,这个辐射源我们称为环顶源。在文章中,通过求亮度重心的方法,我们对耀斑双带的相对运动,以及HXR环顶源的高度变化进行了分析。结果表明:耀斑相偶亮核间距离的时间曲线,与HXR亮度曲线具有相反的相关性,亮核间距离在HXR流量上升阶段会减少;与此同时,HXR环顶源的高度会下降。而通常的相偶亮核的分离运动以及环顶源的上升运动发生在极大相之后。  相似文献   

3.
Moore  R. L.  Schmieder  B.  Hathaway  D. H.  Tarbell  T. D. 《Solar physics》1997,176(1):153-169
We present H and coronal X-ray images of the large two-ribbon flare of 25–26 June, 1992 during its long-lasting gradual decay phase. From these observations we deduce that the 3-D magnetic field configuration late in this flare was similar to that at and before the onset of such large eruptive bipolar flares: the sheared core field running under and out of the flare arcade was S-shaped, and at least one elbow of the S looped into the low corona. From previous observations of filament-eruption flares, we infer that such core-field coronal elbows, though rarely observed, are probably a common feature of the 3-D magnetic field configuration late in large two-ribbon flares. The rare circumstance that apparently resulted in a coronal elbow of the core field being visible in H in our flare was the occurrence of a series of subflares low in the core field under the late-phase arcade of the large flare; these subflares probably produced flaring arches in the northern coronal elbow, thereby rendering this elbow visible in H. The observed late-phase 3-D field configuration presented here, together with the recent sheared-core bipolar magnetic field model of Antiochos, Dahlburg, and Klimchuk (1994) and recent Yohkoh SXT observations of the coronal magnetic field configuration at and before the onset of large eruptive bipolar flares, supports the seminal 3-D model for eruptive two-ribbon flares proposed by Hirayama (1974), with three modifications: (1) the preflare magnetic field is closed over the filament-holding core field; (2) the preflare core field has the shape of an S (or backward S) with coronal elbows; (3) a lower part of the core field does not erupt and open, but remains closed throughout flare, and can have prominent coronal elbows. In this picture, the rest of the core field, the upper part, does erupt and open along with the preflare arcade envelope field in which it rides; the flare arcade is formed by reconnection that begins in the middle of the core field at the start of the eruption and progresses from reconnecting closed core field early in the flare to reconnecting opened envelope field late in the flare.  相似文献   

4.
对3个超级活动区(大的δ型黑子群)NOAA 5395、6659、6891中的电流分布作了系统计算;利用已发表的计算方法,首次用于实际活动区的水平电流分布;给出了电流与耀斑核的关系。将这种关系分为两类:密切相关和准相关,并同时给出了统计结果。结果显示:1)对于垂直电流和水平电流来说,密切相关率分别是29%和10%,准相关率分别是50%和30%;2)有些耀斑核与两种电流都相关,而大多数只与其中一种相关;3)与两种电流都不相关的耀斑核只占6%左右;4)两种电流起互补作用,因而对于预报耀斑具有一定的作用。通过分析还发现,磁场剪切强的地方相应于强的垂直电流,而磁中性线附近纵向磁场梯度大的地方相应于强的水平电流。  相似文献   

5.
We analyze the evolution of the flare/postflare-loop system in the two-ribbon flare of November 3, 2003, utilizing multi-wavelength observations that cover the temperature range from several tens of MK down to 104 K. A non-uniform growth of the loop system enables us to identify analogous patterns in the height–time, h(t), curves measured at different temperatures. The “knees,” “plateaus,” and “bends” in a higher-temperature curve appear after a certain time delay at lower heights in a lower-temperature curve. We interpret such a shifted replication as a track of a given set of loops (reconnected field lines) while shrinking and cooling after being released from the reconnection site. Measurements of the height/time shifts between h(t) curves of different temperatures provide a simultaneous estimate of the shrinkage speed and cooling rate in a given temperature domain, for a period of almost ten hours after the flare impulsive phase. From the analysis we find the following: (a) Loop shrinkage is faster at higher temperatures – in the first hour of the loop-system growth, the shrinkage velocity at 5 MK is 20 – 30 km s−1, whereas at 1 MK it amounts to 5 km s−1; (b) Shrinking becomes slower as the flare decays – ten hours after the impulsive phase, the shrinkage velocity at 5 MK becomes 5 km s−1; (c) The cooling rate decreases as the flare decays – in the 5 MK range it is 1 MK min−1 in the first hour of the loop-system growth, whereas ten hours later it decreases to 0.2 MK min−1; (d) During the initial phase of the loop-system growth, the cooling rate is larger at higher temperatures, whereas in the late phases the cooling rate apparently does not depend on the temperature; (e) A more detailed analysis of shrinking/cooling around one hour after the impulsive phase reveals a deceleration of the loop shrinkage, amounting to ā ≈ 10 m s−2 in the T < 5 MK range; (f) In the same interval, conductive cooling dominates down to T ≈ 3 MK, whereas radiation becomes dominant below T ≈ 2 MK; (g) A few hours after the impulsive phase, radiation becomes dominant across the whole T < 5 MK range. These findings are compared with results of previous studies and discussed in the framework of relevant models.  相似文献   

6.
We analyze the process of formation of delta configuration in some well-known super active regions based on photospheric vector magnetogram observations. It is found that the magnetic field in the initial developing stage of some delta active regions shows a potential-like configuration in the solar atmosphere, the magnetic shear develops mainly near the magnetic neutral line with magnetic islands of opposite polarities, and the large-scale photospheric twisted field forming gradually later. Some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, supposed to be generated in the subatmosphere, is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and not entirely consistent with the relationship with magnetic shear in some delta active regions. (3) T  相似文献   

7.
In this paper we analyse the non-potential magnetic field and the relationship with current (helicity) in the active region NOAA 9077 in 2000 July, using photospheric vector magnetograms obtained at different solar observatories and also coronal extreme-ultraviolet 171-Å images from the TRACE satellite.
We note that the shear and squeeze of magnetic field are two important indices for some flare-producing regions and can be confirmed by a sequence of photospheric vector magnetograms and EUV 171-Å features in the solar active region NOAA 9077. Evidence on the release of magnetic field near the photospheric magnetic neutral line is provided by the change of magnetic shear, electric current and current helicity in the lower solar atmosphere. It is found that the 'Bastille Day' 3B/5.7X flare on 2000 July 14 was triggered by the interaction of the different magnetic loop systems, which is relevant to the ejection of helical magnetic field from the lower solar atmosphere. The eruption of the large-scale coronal magnetic field occurs later than the decay of the highly sheared photospheric magnetic field and also current in the active region.  相似文献   

8.
采用二维三分量磁流体力学模型,对日冕三重无力场电流片的磁场重联进行了数值研究,揭示了重联过程的基本物理特征.这类重联过程将加热和加速日冕等离子体,并导致多个高温、高密度、高磁螺度的磁岛的形成和向上喷发.这表明,多重无力场电流片的重联可能在日冕磁能释放、上行等离子体团的形成和太阳磁场螺度向行星际空间的逃逸方面起重要的作用.  相似文献   

9.
A comparison between the two tracers of magnetic field mirror asymmetry in solar active regions – twist and current helicity – is presented. It is shown that for individual active regions these tracers do not possess visible similarity but averaging by time over the solar cycle, or by latitude, reveals similarities in their behavior. The main property of the data set is antisymmetry over the solar equator. Considering the evolution of helical properties over the solar cycle we find signatures of a possible sign change at the beginning of the cycle, though more systematic observational data are required for a definite confirmation. We discuss the role of both tracers in the context of solar dynamo theory.  相似文献   

10.
The electric current separated into two parts reflected the quantative properties of heterogeneity and chirality of magnetic field, and defined them as the shear and twist components of current. We analyze the basic configuration and evolution of superactive region NOAA 6580-6619-6659. It is found that the contribution of the twist component of current cannot be reflected in the normal analysis of the magnetic shear and gradient of the active regions. The observational evidence of kink magnetic ropes generated from the subatmosphere cannot be found completely in some super delta active regions.  相似文献   

11.
Magnetic reconnection is commonly accepted to play a key role in flare energy release, but only poor information about the main characteristics of this process is available so far. An intrinsic feature of reconnection is plasma density enhancement in current sheets. A unique method to detect this effect is provided by analysis of drifting bursts, whose emission frequency is close to the local Langmuir frequency or its harmonics. With this purpose, we analyze a series of several tens of drifting microwave bursts during the 30 March 2001 flare. The burst drift rates range from −10 to 20 GHz s−1. Using one-dimensional scans recorded with the SSRT interferometer at two different frequencies near 5.7 GHz, we have measured relative positions of burst sources and their velocities along a flare loop revealed from soft X-ray and extreme-ultraviolet images. It is argued that the contribution of the increasing density effect into the observed frequency drift rates is about 6 GHz s−1, which is shown to be consistent with theoretical models of magnetic reconnection with reasonable boundary conditions.  相似文献   

12.
We study the magnetic structure of five well-known active regions that produced great flares (X5 or larger). The six flares under investigation are the X12 flare on 1991 June 9 in AR 6659, the X5.7 flare on 2000 July 14 in AR 9077, the X5.6 flare on 2001 April 6 in AR 9415, the X5.3 flare on 2001 August 25 in AR 9591, the X17 flare on 2003 October 28 and the X10 flare on 2003 October 29, both in AR 10486. The last five events had corresponding LASCO observations and were all associated with Halo CMEs. We analyzed vector magne-tograms from Big Bear Solar Observatory, Huairou Solar Observing Station, Marshall Space Right Center and Mees Solar Observatory. In particular, we studied the magnetic gradient derived from line-of-sight magnetograms and magnetic shear derived from vector magne-tograms, and found an apparent correlation between these two parameters at a level of about 90%. We found that the magnetic gradient could be a better proxy than the shear for predicting where a major flare might occur: all six flares occurred in neutral lines with maximum gradient. The mean gradient of the flaring neutral lines ranges from 0.14 to 0.50 G km-1, 2.3 to 8 times the average value for all the neutral lines in the active regions. If we use magnetic shear as the proxy, the flaring neutral line in at least one, possibly two, of the six events would be mis-identified.  相似文献   

13.
During several campaigns focused on prominences we have obtained coordinated spectral observations from the ground and from space. The SOHO/SUMER spectrometer allows us to observe, among others, the whole Lyman series of hydrogen, while the Hα line was observed by the MSDP spectrograph at the VTT. For the Lyman lines, non-LTE radiative-transfer computations have shown the importance of the optical thickness of the prominence – corona transition region (PCTR) and its relation to the magnetic field orientation for the explanation of the observed line profiles. Moreover, Heinzel, Anzer, and Gunár (2005, Astron. Astrophys. 442, 331) developed a 2D magnetostatic model of prominence fine structures that demonstrates how the shapes of Lyman lines vary, depending on the orientation of the magnetic field with respect to the line of sight. To support this result observationally, we focus here on a round-shaped filament observed during three days as it was crossing the limb. The Lyman profiles observed on the limb are different from day to day. We interpret these differences as being due to the change of orientation of the prominence axis (and therefore the magnetic field direction) with respect to the line of sight. The Lyman lines are more reversed if the line of sight is across the prominence axis as compared to the case when it is aligned along its axis.  相似文献   

14.
Using magnetograms, EUV and Hα images, Owens Valley Solar Array microwave observations, and 212-GHz flux density derived from the Solar Submillimeter Telescope data, we determine the spatial characteristics of the 1B/M6.9 flare that occurred on November 28, 2001, starting at 16:26 UT in active region (AR) NOAA 9715. This flare is associated with a chromospheric mass ejection or surge observed at 16:42 UT in the Hα images. We compute the coronal magnetic field under the linear force-free field assumption, constrained by the photospheric data of the Michelson Doppler Imager and loops observed by the Extreme Ultraviolet Imaging Telescope. The analysis of the magnetic field connectivity allows us to conclude that magnetic field reconnection between two different coronal/chromospheric sets of arches was at the origin of the flare and surge, respectively. The optically thick microwave spectrum at peak time shows a shape compatible with the emission from two different sites. Fitting gyrosynchrotron emission to the observed spectrum, we derive parameters for each source. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

15.
We analyze the relationship between the acceleration of coronal mass ejections (CMEs) and the energy release in associated flares, employing a sample of 22 events in which the CME kinematics were measured from the pre-eruption stage up to the post-acceleration phase. The data show a distinct correlation between the duration of the acceleration phase and the duration of the associated soft X-ray (SXR) burst rise, whereas the CME peak acceleration and velocity are related to the SXR peak flux. In the majority of events the acceleration started earlier than the SXR burst, and it is usually prolonged after the SXR burst maximum. In about one half of the events the acceleration phase is very closely synchronized with the fastest growth of the SXR burst. An additional one quarter of the events may be still considered as relatively well-synchronized, whereas in the remaining quarter of the events there is a considerable mismatch. The results are interpreted in terms of the feedback relationship between the CME dynamics and the reconnection process in the wake of the CME.  相似文献   

16.
A New Method of Identifying 3D Null Points in Solar Vector Magnetic Fields   总被引:7,自引:0,他引:7  
Employing the Poincare index of isolated null-points in a vector field, we worked out a mathematical method of searching for 3D null-points in coronal magnetic fields. After introducing the relevant differential topology, we test the method by using the analytical model of Brown & Priest. The location of null-point identified by our method coincides precisely with the analytical solution. Finally we apply the method to the 3D coronal magnetic fields reconstructed from an observed MDI magnetogram of a super-active region (NOAA 10488). We find that the 3D null-point seems to be a key element in the magnetic topology associated with flare occurrence.  相似文献   

17.
We reported recently some rapid changes of sunspot structure in white-light(WL) associated with major flares.We extend the study to smaller events and present here results of a statistical study of this phenomenon.In total,we investigate 403 events from 1998 May 9 to 2004 July 17,including 40 X-class,174 M-class,and 189 C-class flares.By monitoring the structure of the flaring active regions using the WL observations from the Transition Region and Coronal Explorer(TRACE),we find that segments in the outer sunspot structure decayed rapidly right after many flares;and that,on the other hand,the central part of sunspots near the flare-associated magnetic neutral line became darkened.These rapid and permanent changes are evidenced in the time profiles of WL mean intensity and are not likely resulted from the flare emissions.Our study further shows that the outer sunspot structure decay as well as the central structure darkening are more likely to be detected in larger solar flares.For X-class flares,over 40% events show distinct sunspot structure change.For M-and C-class flares,this percentage drops to 17% and 10%,respectively.The results of this statistical study support our previously proposed reconnection picture,i.e.,the flare-related magnetic fields evolve from a highly inclined to a more vertical configuration.  相似文献   

18.
The ability of the Transition Region and Coronal Explorer (TRACE) to image solar plasma over a wide range of temperatures (Te approximately 104-107 K) at high spatial resolution (0&farcs;5 pixels) makes it a unique instrument for observing solar flares. We present TRACE and Yohkoh observations of an M2.4 two-ribbon flare that began on 1999 July 25 at about 13:08 UT. We observe impulsive footpoint brightenings that are followed by the formation of high-temperature plasma (Te greater, similar10 MK) in the corona. After an interval of about 1300 s, cooler loops (Te<2 MK) form below the hot plasma. Thus, the evolution of the event supports the qualitative aspects of the standard reconnection model of solar flares. The TRACE and Yohkoh data show that the bulk of the flare emission is at or below 10 MK. The TRACE data are also consistent with the Yohkoh observations of hotter plasma (Te approximately 15-20 MK) existing at the top of the arcade. The cooling time inferred from these observations is consistent with a hybrid cooling time based on thermal conduction and radiative cooling.  相似文献   

19.
20.
林元章 《天文学进展》1995,13(3):185-194
在太阳耀斑区磁场和电流研究方面,文中将着重介绍太阳横向磁场方位的确定,太阳活动区磁场的非热性表示、太阳耀斑前后的活动区磁场变化、以及耀斑核块与活动区纵向电流密度极大点位置的关系等几个重要问题的研究现状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号