首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ice temperature measurements were taken from three shallow and five deep (to bedrock) boreholes on Hansbreen, Svalbard, in selected years between 1988 and 1994. In general, results show a subpolar, polythermal structure. The glacier accumulation zone is of warm ice within the entire vertical profile except the uppermost layer of seasonal temperature fluctuations where there is an upper cold ice layer in the ablation zone which varies in thickness and may even be absent in the western lateral part. The upper layer of cold ice thins along the glacier centre-line from the equilibrium line altitude down to the glacier front. The depth of the pressure melting, indicating the base of the cold ice layer, was defined at the borehole measurement sites but was not manifested as an internal reflection horizon using multi-frequency radar methods. The isotherm lies about 20 m above a radar internal reflecting horizon near the equilibrium line altitude and about 40 m above it in the frontal part of the glacier. The internal reflection horizon almost certainly reflects the high water content within temperate ice and not the cold/temperate ice interface. At 10 m depth, the temperatures are 2–3°C higher than the calculated mean annual air temperatures, demonstrating the importance of meltwater refreezing on the release of latent heat.  相似文献   

2.
The polythcrmal valley glacier Erikbreen (79°40'N 12°30'E), northern Spitsbergen, was investigated in 1970 and 1990 using digital photogrammetry and digital elevation model (DEM) techniques. The bottom topography was derived from radio-echo soundings. Based on the DEM, mass balance and changes of surface slope, crevasse and flow pattern were evaluated, and internal ice deformation velocities were calculated. Calculations of the total mass balance show that Erikbreen has not been in equilibrium for the last 20 years. The average surface lowering was 0.38 m/a and the volume had decreased by 5% to 6% from 1970 to 1990 or on the average by 3.5 × 10−1 water. The glacier surface subsided over the whole glacier area except in minor areas with northfacing slopes in the accumulation area. The surface slope and the crevasse pattern, however, did not change significantly during the 20-year-period, except in areas below 100 ma.s.l.  相似文献   

3.
I. Sobota 《Polar Science》2011,5(3):327-336
This study examines the mass balance, accumulation, melt, and near-surface ice thermal structure of Irenebreen, a 4.1 km2 glacier located in northwest Spitsbergen, Svalbard. Traditional glaciological mass balance measurements by stake readings and snow surveying have been conducted annually at the glacier since 2002, yielding a mean annual net mass balance of −65 cm w.e. for the period 2002–2009. In 2009, the annual mass balance of Irenebreen was −63 cm w.e. despite above-average snow accumulation in winter. The near-surface ice temperature in the accumulation area was investigated with automatic borehole thermistors. The mean annual surface ice temperatures (September–August) of the accumulation area were −3.7 °C at 1 m depth and −3.3 °C at 10 m depth. Irenebreen is potentially polythermal, with cold ice and a temperate surface layer during summer. This temperate surface layer is influenced by seasonal changes in temperature. In winter, the temperature of all the ice is below the melting point and temperate layers are probably present in basal sections of the glacier. This supposition is supported by the presence of icings in the forefield of Irenebreen.  相似文献   

4.
TemperaturedistributionofCollinsIceCap,KingGeorgeIsland,AntarcticaHanJiankang(韩建康)andJinHuijiun(金会军)(LanzhouInstituteofGlacio...  相似文献   

5.
Storglaciären is a 3.2 km long polythermal valley glacier in northern Sweden. Since 1994 a number of small (1–2 m high) transverse debris‐charged ridges have emerged at the ice surface in the terminal zone of the glacier. This paper presents the results of a combined structural glaciological, isotopic, sedimentological and ground‐penetrating radar (GPR) study of the terminal area of the glacier with the aim of understanding the evolution of these debris‐charged ridges, features which are typical of many polythermal glaciers. The ridges originate from steeply dipping (50–70°) curvilinear fractures on the glacier surface. Here, the fractures contain bands of sediment‐rich ice between 0.2 and 0.4 m thick composed of sandy gravel and diamicton, interpreted as glaciofluvial and basal glacial material, respectively. Structural mapping of the glacier from aerial photography demonstrates that the curvilinear fractures cannot be traced up‐glacier into pre‐existing structures visible at the glacier surface such as crevasses or crevasse traces. These curvilinear fractures are therefore interpreted as new features formed near the glacier snout. Ice adjacent to these fractures shows complex folding, partly defined by variations in ice facies, and partly by disseminated sediment. The isotopic composition (δ18O) of both coarse‐clear and coarse‐bubbly glacier ice facies is similar to the isotopic composition of the interstitial ice in debris layers that forms the debris‐charged ridges, implying that none of these facies have undergone any significant isotopic fractionation by the incomplete freezing of available water. The GPR survey shows strong internal reflections within the ice beneath the debris‐charged ridges, interpreted as debris layers within the glacier. Overall, the morphology and distribution of the fractures indicate an origin by compressional glaciotectonics near the snout, either at the thermal boundary, where active temperate glacier ice is being thrust over cold stagnant ice near the snout, or as a result of large‐scale recumbent folding in the glacier. Further work is required to elucidate the precise role of each of these mechanisms in elevating the basal glacial and glaciofluvial material to the ice surface.  相似文献   

6.
钻孔内温度实测表明,柯林斯冰帽积累区大部分呈温性,消融区可能呈冷性。冰帽活动层温度明显受气温季节变化的影响,降水暖渗浸对冰的增温作用显著,雪盖对温度分布也显示了一定的影响。测量显示,冰帽纵深层的温度大都接近融点,而小冰穹顶附近十数米范围内温度变化较大。小冰穹顶附近,钻进时30m以下孔中出水现象显著,可能是冰内径流、差异运动和较高盐度等因素共同作用的结果。  相似文献   

7.
The englacial structures and ice thickness of the Laohugou No. 12 (L12) Glacier in the Qilian Mountains, China, were retrieved from ground-penetrating radar (GPR) profile data acquired in August of 2007. Here the interpretation of a typical GPR image is validated using two-dimensional, Finite-Difference Time-Domain (FDTD) numerical modeling. Data analyses revealed many englacial characteristics, such as temperate ice, crevasses, and cavities at the position of convergence between the eastern and western glacial branches of L12, and at an altitude between 4,600 and 4,750 m a.s.l. on the east branch. Combining ice thickness, englacial structures, subglacial topography, and surface flow velocities of this glacier, we analyzed the reasons for the distribution of temperate ice. The results show that greater englacial water content is associated with englacial crevassing and surface moulins, which allow water to be channeled to the temperate ice aquifer beneath the surface cold ice layer. Analysis of air temperature data shows that as more meltwater imports into the ice body, this has a great effect on water conservation and dynamics conditions. With climate warming, and under the influence of crevasses, subglacial structures, and ice thickness, ice thickness reduction on the L12 east branch is more rapid than that on the west branch.  相似文献   

8.
任贾文 《极地研究》1990,2(2):22-27
根据十多米深度钻孔温度的测量和分析,对长城站附近地区的冰川温度状况进行了讨论。近表面层温度在消融区稍低于-1℃,在积累区绝大部分区域接近或处于0℃。除海拔足够高的地方,如乔治王岛冰帽顶部,那里由于融化微弱且厚度不很大而致使冰与底床冻结在一起,该地区冰川大部分属于温型。  相似文献   

9.
A next-generation drilling system, equipped with a thermal drilling device, is proposed for glacier ice. The system is designed to penetrate glacier ice via melting of the ice and continuously analyze melt-water in a contamination-free sonde. This new type of drilling system is expected to provide analysis data in less time and at less cost than existing systems. Because of the limited number of parameters that can be measured, the proposed system will not take the place of conventional drilling systems that are used to obtain ice cores; however, it will provide a useful method for quickly and simply investigating glacier ice.An electro-thermal drilling device is one of the most important elements needed to develop the proposed system. To estimate the thermal supply required to reach a target depth in a reasonable time, laboratory experiments were conducted using ice blocks and a small sonde equipped solely with heaters. Thermal calculations were then performed under a limited range of conditions. The experiments were undertaken to investigate the effects of the shape and material of the drill head and heater temperature on the rate of penetration into the ice. Additional thermal calculations were then performed based on the experimental results.According to the simple thermal calculations, if the thermal loss that occurs while heat is transferred from the heater to ice (in melting the ice) is assumed to be 50%, the total thermal supply required for heaters in the sonde and cable is as follows: (i) 4.8 kW (sonde) plus 0 W (cable) to penetrate to 300 m depth over 10 days into temperate glacier ice for which the temperature is 0 °C at all depths and to maintain a water layer along 300 m of cable; (ii) 10 kW (sonde) plus 19–32 kW (cable) to penetrate to 1000 m depth over 1 month into cold glacier ice for which the temperature is −25 °C at the surface and 0 °C at 1000 m depth and to maintain a water layer along 1000 m of cable; and (iii) 19 kW (sonde) plus 140–235 kW (cable) to penetrate to 3000 m depth over 2 months into an ice sheet for which the temperature is −55 °C at the surface and 0 °C at 3000 m depth and to maintain a water layer along 3000 m of cable. The thermal supply required for the cable is strongly affected by the thickness of the water layer, cable diameter, and the horizontal distance from the ice wall at which the ice temperature was maintained at its initial temperature. A large thermal supply is required to heat 3000 m of cable in an ice sheet (scenario (iii) above), but penetration into glacier ice (scenarios (i) and (ii) above) could be realistic with the use of a currently employed generator.  相似文献   

10.
An 8 m long carcass of a bowhead whale ( Balaena mysticetus ) melted out from remnant glacier ice in the lateral moraine of the Jemelianovbreen glacier in August 1996. Folded and sheared sediment bands in the ice suggest that the whale was incorporated during an advance of the glacier. The whale's longitudinal axis was oriented parallel to the direction of the ice-flow, with the thinnest posterior part dipping upflow. The posterior section was best preserved with muscles and blubber, although the entire skin surface was strongly decomposed and only a thick fibrous surface was left of the blubber. The abdominal wall was holed, most likely by marine organisms, and partly filled with a compacted mixture of well-sorted gravelly beach sediments and fat. the whale seems to have been incorporated into the glacier together with glaciomarine sediments and carried by the flowing ice to an altitude of ca. 15 m. Jemelianovbreen is a tidewater glacier with two known surge-episodes. The first and most extensive of these occurred ca. 1900 AD and reached ca. 7 km outside the present coast-line. Radiocarbon dating of a fragment of a caudal vertebra yielded 345 ± 40 14C years BP (1535-1660 cal. AD), suggesting that the whale lived some time during the last part of the cold period known as the Little Ice Age.  相似文献   

11.
Projections of changes in glacier mass balance caused by climate changes involve modelling present mass balance in terms of climate and then perturbing the climate variables to calculate future mass balance. The simplest model involves linear regression of mass balance time series on temperature and precipitation data at stations close to the glacier but we prefer the degree-day model. This model uses temperature and precipitation to calculate snow accumulation, snow and ice melting, and possible refreezing of meltwater at regular altitude intervals on a glacier. Model parameters are still somewhat uncertain and are established for individual glaciers by tuning the model mass balance as a function of altitude to fit observed data. The model has been applied to 37 glaciers in different parts of the world so far and some details are given for Storglaciären to illustrate the approach. The sensitivity of modelled mass balance to a +1°C temperature increase shows a wide range for the 37 glaciers from about 0.1 to 1.3 m water a−1 . Sub-polar glaciers have lower temperature sensitivities, and maritime and tropical glaciers have higher sensitivities.  相似文献   

12.
The capability of RADARSAT synthetic aperture radar (SAR) for the purpose of snow-line/accumulation area mapping for a temperate alpine glacier is examined. In agreement with other orbital C-band SAR studies, RADARSAT can discriminate between firn and bare ice facies. Limited observations are reported with respect to the electromagnetic variability of the ice facies in the ablation area, but they are inconclusive. Operational considerations are discussed with respect to reconciling the uncertainties of late-summer weather and their possible impact on the dielectric and scattering properties of the glacier surface. Vagaries associated with other glacier settings, mass balance states and their associated facies configurations are discussed including the difficulty of using the transient snow-line to define the equilibrium line and the lower extent of the accumulation area for glaciers where superimposed ice may form.
The radar remote-sensing reconnaissance of equilibrium line altitude (ELA) and accumulation area ratio (AAR) for estimating glacier mass balance requires serious consideration in those instances where traditional ground measurements used in the direct glaciological method are absent. However, with respect to the ELA, such estimates can vary depending on the accuracy of the reference digital elevation information. Moreover, for many glacier configurations, where mass balance variations due to altitude are influenced or in some cases completely masked by local balance variations, defining the ELA may be an irreconcilable problem. Using the AAR may be more robust in this regard. It is further determined that the total error inherent in the reconnaissance method would have serious implications for the confident estimation of mass balance normals and climate-related trends if the method were to be utilized over the longer term.  相似文献   

13.
天山1号冰川厚度和冰下地形探测与冰储量分析   总被引:12,自引:0,他引:12       下载免费PDF全文
通过对天山乌鲁木齐河源 1号冰川的雷达回波探测 ,清晰地揭示出冰川底部冰 /岩界面的位置及其起伏变化特征 ,显示出雷达波对山地冰川良好的穿透能力和对冰下地形的高分辨能力 ,冰川雷达测厚的误差小于 1 .2 %。研究结果显示 ,1号冰川东支冰川平均厚度为 5 8.77m ,西支冰川平均厚度为 44.84m ,冰体厚度最大值发育于冰川中部趋于主流线位置。冰川冰储量计算表明 ,东支冰储量为 0 .0 5 1 868km3,西支冰储量为 0 .0 2 0 2 1 0km3。表面和底部地形有明显差异 ,主要因冰川动力过程对基岩强烈的地貌作用所致 ,意味着冰床的起伏地形对冰川浅层冰体的运动过程影响不显著。  相似文献   

14.
Glacier Benito is a temperate outlet glacier on the west side of the North Patagonian Icefield. Rates of thinning and ablation were obtained using data collected by the British Joint Services Expedition in 1972/73 and subsequent data collected in 2007 and 2011. Ice‐front recession rates were based on dendrochronological dating for the terminal moraines and aerial and satellite imagery of the ice front in 1944, 1998 and 2002. Between the first Benito survey in 1973 and 2007, the lower glacier thinned by nearly 150 m at an average rate of 4.3 m yr?1 with the rate increasing to 6.1 m yr?1 between 2007 and 2011, a 28.7% increase during the latter period. Increases in ice movement and ablation were negligible: ice movement for 1973 and 2007 averaged 0.45 m day?1 and ablation averaged 0.05 m day?1. Ice front recession along the glacier's centre line from 1886 to 2002 was approximately 1860 m. Retreat rates between 1886 and 1944 averaged 8.9 m yr?1. Thereafter glacier asymmetry makes measurement along the glacier centre line unrepresentative of areal change until 1998 when symmetry was restored; retreat between 1944 and 1998 was 15.4 m yr?1. From 1998 to 2002 the rate increased dramatically to 127.2 m yr?1. Recession from the southern end of Benito's terminal moraine in the 1850s supports an early date for initial retreat of the Icefield's glaciers.  相似文献   

15.
Glacier surge at Usherbreen, Svalbard   总被引:2,自引:0,他引:2  
Usherbreen started to surge in 1978, and the front has advanced 1.5 km and covered an area of 4.5 km2. During the first two years the front advanced more than 1 m/d, and the front was still advancing 0.15– 0.20m/d in 1985, seven years after the start. The mean gradient of the lower 7 km decreased from 3.3 grad. to 1.8 grad. during the surge. The volume of ice transported down the glacier from higher to lower parts during the surge was 815 x lO'm3. which is almost 20% of the total glacier volume. Old icecored ridges in front of the glacier were reactivated, and the whole ridge system was pushed forward, in the summer of 1985 at a speed of about 0.05 m/d. Parts of the ridge system were moved 200 m during this surge. New ridges were developed on the flat sandur in front of the old ridge system. This demonstrates that the glacier advanced further than in any previous surge.  相似文献   

16.
We present a glaciological and climatic reconstruction of a former glacier in Coire Breac, an isolated cirque within the Eastern Grampian plateau of Scotland, 5 km from the Highland edge. Published glacier reconstructions of presumed Younger Dryas‐age glaciers in this area show that equilibrium line altitudes decreased steeply towards the east coast, implying a arctic maritime glacial environment. Extrapolation of the ELA trend surface implies that glaciers should have existed in suitable locations on the plateau, a landscape little modified by glaciation. In Coire Breac, a 0.35 km2 cirque glacier existed with an equilibrium line altitude of 487 ± 15 m above present sea level. The equilibrium line altitude matches closely the extrapolated regional equilibrium line altitude trend surface for Younger Dryas Stadial glaciers. The mean glacier thickness of 24 m gives an ice volume of 7.8 × 106 m3, and a maximum basal shear stress of c. 100 kPa?1. Ablation gradient was c. –0.0055 m m?1, with a mean July temperature at the equilibrium line altitude of c. 5.1°C. The reconstruction implies an arctic maritime climate of low precipitation with local accumulation enhanced by blown snow, which may explain the absence of other contemporary glaciers nearby. Reconstructed ice flow lines show zones of flow concentration around the lower ice margin which help to explain the distribution of depositional facies associated with a former debris cover which may have delayed eventual glacier retreat. No moraines in the area have been dated, so palaeoclimatic interpretations remain provisional, and a pre‐Lateglacial Interstadial age cannot be ruled out.  相似文献   

17.
Based on the data of δ18O in surface snow, snow pits, meltwater and the glacier-fed river water at Baishui Glacier No.1, Mt. Yulong, the isotopic fractionation behaviors in the typical monsoonal temperate glacier system in winter and summer were compared. The results indicate that the isotopic fractionation degree in summer is greater than that in winter, suggesting that the snow/ice melting is more intense in summer. Moreover, whenever it is in winter or summer, from surface snow to meltwater, and to glacier-fed river water, the gradient of δ18O with altitude gradually increases. This shows that the degree of isotopic fractionation gradually strengthens when surface snow is being converted into meltwater and finally into glacial river water, which suggests that the influence of post-depositional processes on δ18O gradient in the monsoonal temperate glacier region differs spatially.  相似文献   

18.
玉龙雪山冰川稳定同位素分馏冬夏对比   总被引:8,自引:0,他引:8  
利用玉龙雪山白水1号冰川区冬季和夏季表面积雪、雪坑、融水以及白水河河水中δ18O资料,对比分析了冬季和夏季我国典型季风温冰川系统内稳定同位素分馏行为的差异。分析结果表明,夏季冰川系统内各水体相变过程中稳定同位素分馏程度均比冬季强烈,指示出夏季季风海洋型冰川强烈消融的特点。另外,不论是冬季还是夏季,从表面积雪到融水再到由融水补给的河流,δ18O垂直变化梯度依次增大,反映了从固态降雪向冰川融水补给的河流河水转换过程中,稳定同位素分馏程度逐渐增强,体现了沉积后过程对海洋型冰川区同位素记录的影响具有空间差异性。  相似文献   

19.
ABSTRACT

The advance and retreat of glaciers, influenced by changes of local and regional climates, can result in dramatic landscape changes. The article, which follows up previous documentation of long-term studies at Svartisen, deals with changes of Flatisen: at the end of the 19th century, this was one of the largest glaciers of West Svartisen, and was supplied by accumulation areas that rose to > 1400 m a.s.l. It crossed the river Glomåga and ascended to 100 m above the valley floor. The river had a subglacial course until the 1920s. A proglacial lake, formed in front of the glacier in the 1930s and became larger throughout the rest of the 20th century. Changes of Flatisen between 1957 and 1990 were monitored during visits to the glacier. After the retreating front became inaccessible by land, photographs were taken. Early this century, the glacier retreated from the lake. A helicopter reconnaissance in July 2017 revealed that the surface was almost wholly below 1000 m a.s.l., the local equilibrium line altitude of recent years. Without a permanent accumulation zone, Flatisen is likely to disappear within the first half of the present century.  相似文献   

20.
Air-borne radio-echo soundings of sub-polar glaciers in Svalbard have previously been carried out by Soviet scientists using high frequency radar units of 620 and 440 MHz. Later a British/Norwegian group made soundings with 60 MHz equipment. The high frequency radar units seemed to underestimate the ice thicknesses. The 60 MHz radar unit seemed to give more accurate results when compared to areas with gravity surveyed bed. However, both the Soviet and the British equipment seldom recorded bed-echoes in accumulation areas where firn soaking during summer and thus zero temperatures are likely to occur. A low-frequency impulse radar unit of 8 MHz, however, recorded bed echoes in these areas too. In the accumulation area of Kongsvegen depths down to 440 m were recorded. The glacier bed is thus close to sea level at approximately 12 km from the calving front. Soundings were carried out on Brøggerbreen. Lovenbreen and Kongsvegen. Subglacial maps were generated from the data. Internal reflections that were probably caused by englacial drainage channels could be observed. Frequent internal reflections close to the bed could be interpreted as an indication of temperate ice. However, we could not find any distinct upper level of these reflections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号