首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We present results of VLBA observations of SS433 at two epochs at 5, 8.4, and 15 GHz. The AU-scale region of the source is resolved and shows the familiar quasi-symmetric core-jet structures. But at another epoch, the maps show bright knots ejected a few days before the observation, while the core-complex disappeared. The bright jet components are completely depolarised with fractional polarization less than 0.5%. We also present the first VLBI image of SS433 at 22 GHz.  相似文献   

4.
5.
6.
7.
8.
9.
In this paper we study the relation of radio emission to X-ray spectral and variability properties for a large sample of black hole X-ray binary systems. This is done to test, refine and extend – notably into the timing properties – the previously published 'unified model' for the coupling of accretion and ejection in such sources. In 14 outbursts from 11 different sources we find that in every case the peak radio flux, on occasion directly resolved into discrete relativistic ejections, is associated with the bright hard to soft state transition near the peak of the outburst. We also note the association of the radio flaring with periods of X-ray flaring during this transition in most, but not all, of the systems. In the soft state, radio emission is in nearly all cases either undetectable or optically thin, consistent with the suppression of the core jet in these states and 'relic' radio emission from interactions of previously ejected material and the ambient medium. However, these data cannot rule out an intermittent, optically thin, jet in the soft state. In attempting to associate X-ray timing properties with the ejection events we find a close, but not exact, correspondence between phases of very low integrated X-ray variability and such ejections. In fact the data suggest that there is not a perfect one-to-one correspondence between the radio, X-ray spectral or X-ray timing properties, suggesting that they may be linked simply as symptoms of the underlying state change and not causally to one another. We further study the sparse data on the reactivation of the jet during the transition back to the hard state in decay phase of outbursts, and find marginal evidence for this in one case only. In summary we find no strong evidence against the originally proposed model, confirming and extending some aspects of it with a much larger sample, but note that several aspects remain poorly tested.  相似文献   

10.
11.
12.
13.
《Astroparticle Physics》2009,32(2):112-119
SS433, located at the center of the supernova remnant W50, is a close proximity binary system consisting of a compact star and a normal star. Jets of material are directed outwards from the vicinity of the compact star symmetrically to the east and west. Non-thermal hard X-ray emission is detected from lobes lying on both sides. Shock accelerated electrons are expected to generate VHE gamma rays through the inverse-Compton process in the lobes. Observations of the western X-ray lobe region of SS433/W50 system have been performed to detect VHE gamma rays using the 10 m CANGAROO-II telescope in August and September, 2001, and July and September, 2002. The total observation times are 85.2 h for ON source, and 80.8 h for OFF source data. No significant excess of VHE gamma rays has been found at three regions of the western X-ray lobe of SS433/W50 system. We have derived 99% confidence level upper limits to the fluxes of gamma rays and have set constraints on the strengths of the magnetic fields assuming the synchrotron/inverse-Compton model for the wide energy range of photon spectrum from radio to TeV. The derived lower limits are G for the center of the brightest X-ray emission region and G for the far end from SS433 in the western X-ray lobe. In addition, we suggest that the spot-like X-ray emission may provide a major contribution to the hardest X-ray spectrum in the lobe.  相似文献   

14.
15.
16.
We summarize all the reported detections of, and upper limits to, the radio emission from persistent (i.e. non-transient) X-ray binaries. A striking result is a common mean observed radio luminosity from the black hole candidates (BHCs) in the low/hard X-ray state and the neutron star Z sources on the horizontal X-ray branch. This implies a common mean intrinsic radio luminosity to within a factor of 25 (or less, if there is significant Doppler boosting of the radio emission). Unless coincidental, these results imply a physical mechanism for jet formation that requires neither a black hole event horizon nor a neutron star surface. As a whole the populations of Atoll and X-ray pulsar systems are less luminous by factors of ≳5 and ≳10 at radio wavelengths than the BHCs and Z sources (while some Atoll sources have been detected, no high-field X-ray pulsar has ever been reliably detected as a radio source). We suggest that all of the persistent BHCs and the Z sources generate, at least sporadically, an outflow with physical dimensions 1012 cm; that is, significantly larger than the binary separations of most of the systems. We compare the physical conditions of accretion in each of the types of persistent X-ray binary and conclude that a relatively low (1010 G) magnetic field associated with the accreting object, and a high (0.1 Eddington) accretion rate and/or dramatic physical change in the accretion flow, are required for formation of a radio-emitting outflow or jet.  相似文献   

17.
18.
Observations of the black hole X-ray binary V404 Cyg with the very long baseline interferometer the High Sensitivity Array (HSA) have detected the source at a frequency of 8.4 GHz, providing a source position accurate to 0.3 mas relative to the calibrator source. The observations put an upper limit of 1.3 mas on the source size (5.2 au at 4 kpc) and a lower limit of  7 × 106  K on its brightness temperature during the normal quiescent state, implying that the radio emission must be non-thermal, most probably synchrotron radiation, possibly from a jet. The radio light curves show a short flare, with a rise time of ∼30 min, confirming that the source remains active in the quiescent state.  相似文献   

19.
20.
A spatially unresolved velocity feature, with an approaching radial velocity of  ≈100 km s−1  with respect to the systemic radial velocity, in a position–velocity array of [O  iii ] 5007-Å line profiles is identified as the kinematical counterpart of a jet from the proplyd LV 5 (158–323) in the core of the Orion nebula. The only candidate in Hubble Space Telescope ( HST ) imagery for this jet appears to be a displaced, ionized knot. Also an elongated jet projects from the proplyd GMR 15 (161–307). Its receding radial velocity difference appears at  ≈80 km s−1  in the same position–velocity array.
A 'standard' model for jets from young, low-mass stars invokes an accelerating, continuous flow outwards with an opening angle of a few degrees. Here an alternative explanation is suggested which may apply to some, if not all, of the proplyd jets. In this, a 'bullet' of dense material is ejected which ploughs through dense circumstellar ambient gas. The decelerating tail of material ablated from the surface of the bullet would be indistinguishable from a continuously emitted jet in current observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号