首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The vertical structure of Planetary boundary layer over Arctic floating ice is presented by using about 50 atmospheric profiles and relevant data sounded at an ice station over Arctic Ocean from 22 August to 3 September,2003.It shows that the height of the convective boundary layer in day is greater than that of the stability boundary layer in night.The boundary layer can be described as vertical structures of stability,instability and multipling The interaction between relative warm and wet down draft air from up level and cool air of surface layer is significant,which causes stronger wind shear,temperature and humidity inversion with typical wind shear of 10 m/s/100 m,intensity of temperature inversion of 8 ℃/100 m.While the larger pack ice is broken by such process,new ice free area in the high latitudes of arctic ocean.The interactions between air/ice/water are enhanced.The fact helps to understanding characteristics of atmospheric boundary layer and its effect in Arctic floating ice region.  相似文献   

2.
The spatial distribution of snow cover on the central Arctic sea ice is investigated here based on the observations made during the Third Chinese Arctic Expedition. Six types of snow were observed during the expedition: new/recent snow, melt-freeze crust, icy layer, depth hoar, coarse-grained, and chains of depth hoar. Across most measurement areas, the snow surface was covered by a melt-freeze crust 2-3 cm thick, which was produced by alternate strong solar radiation and the sharp temperature decrease over the summer Arctic Ocean. There was an intermittent layer of snow and ice at the base of the snow pack. The mean bulk density of the snow was 304.01±29.00 kg/m3 along the expedition line, and the surface values were generally smaller than those of the subsurface, confirming the principle of snow densification. In addition, the thicknesses and water equivalents of the new/recent and total-layer snow showed a decreasing trend with latitude, suggesting that the amount of snow cover and its spatial variations were mainly determined by precipitation. Snow temperature also presented significant variations in the vertical profile, and ablation and evaporation were not the primary factors in the snow assessment in late summer. The mean temperature of the surface snow was 2.01±0.96°C, which was much higher than that observed in theinterface of snow and sea ice.  相似文献   

3.
Timo Vihma 《极地研究》2008,19(2):108-122
Evolution of the Arctic sea ice and its snow cover during the SHEBA year were simulated by applying a high-resolution thermodynamic snow/ice model (HIGHTSI).Attention was paid to the impact of albedo on snow and sea ice mass balance,effect of snow on total ice mass balance,and the model vertical resolution. The SHEBA annual simulation was made applying the best possible external forcing data set created by the Sea Ice Model Intercomparison Project.The HIGHTSI control run reasonably reproduced the observed snow and ice thickness.A number of albedo schemes were incorporated into HIGHTSI to study the feedback processes between the albedo and snow and ice thickness.The snow thickness turned out to be an essential variable in the albedo parameterization.Albedo schemes dependent on the surface temperature were liable to excessive positive feedback effects generated by errors in the modelled surface temperature.The superimposed ice formation should be taken into account for the annual Arctic sea ice mass balance.  相似文献   

4.
Estimates of near surface layer parameters over 78°N drifting ice in ice camp over the Arctic ocean are made using bulk transfer methods with the data from the experiments operated by the Chinese Arctic Scientific Expedition in August 22-September 3,2003.The results show that the net radiation received by the snow surface is only 3.6 W/m2,among which the main part transported into atmosphere in term of sensible heat and latent heat,which account for 52% and 31% respectively,and less part being transported to deep ice in the conductive process.The bulk transfer coefficient of momentum is about 1.16×10-3 in the near neutral layer,which is a little smaller than that obtained over 75°N drifting ice.However,to compare with the results observed over 75°N drifting ice over the Arctic Ocean in 1999,it can be found that the thermodynamic and momentum of interactions between sea and air are significant different with latitudes,concentration and the scale of sea ice.It is very important on considering the effect of sea-air-ice interaction over the Arctic Ocean when studying climate modeling.  相似文献   

5.
A model study is conducted to examine the role of Pacific water in the dramatic retreat of arctic sea ice during summer 2007.The model generally agrees with the observations in showing considerable seasonal and interannual variability of the Pacific water inflow at Bering Strait in response to changes in atmospheric circulation. During summer 2007 anomalously strong southerly winds over the Pacific sector of the Arctic Ocean strengthen the ocean circulation and bring more Pacific water into the Arctic than the recent(2000-2006) average.The simulated summer(3 months) 2007 mean Pacific water inflow at Bering Strait is 1.2 Sv,which is the highest in the past three decades of the simulation and is 20%higher than the recent average.Particularly ,the Pacific water inflow in September 2007 is about 0.5 Sv or 50%above the 2000-2006 average.The strengthened warm Pacific water inflow carries an additional 1.0×10~(20) Joules of heat into the Arctic,enough to melt an additional 0.5 m of ice over the whole Chukchi Sea.In the model the extra summer oceanic heat brought in by the Pacific water mainly stays in the Chukchi and Beaufort region,contributing to the warming of surface waters in that region.The heat is in constant contact with the ice cover in the region in July through September.Thus the Pacific water plays a role in ice melting in the Chukchi and Beaufort region all summer long in 2007,likely contributing to up to 0.5 m per month additional ice melting in some area of that region .  相似文献   

6.
The high mountains of Hindu-Kush Karakoram and Himalaya(HKKH) contain a large volume of snow and ice, which are the primary sources of water for the entire mountainous population of HKKH. Thus, knowledge of these available resources is very important in relation to their sustainable use. A Modified Positive Degree Day Model was used to simulate daily discharge with the contribution of snow and ice melt from the Shigar River Basin, Central Karakoram, Pakistan. The basin covers an area of 6,921 km2 with an elevation range of 2,204 to 8,611 m a.s.l.. Forty percent of the total area is glaciated among which 20% is covered by debris and remaining 80% by clean ice and permanent snow. To simulate daily discharge, the entire basin was divided into 26 altitude belts. Remotely sensed land cover types are derived by classifying Landsat images of 2009. Daily temperature and precipitation from Skardu meteorological station is used to calibrate the glacio-hydrological model as an input variable after correlating data with the Shigar station data(r=0.88). Local temperature lapse rate of 0.0075 °C/m is used. 2 °C critical temperature is used to separate rain and snow from precipitation. The model is calibrated for 1988~1991 and validated for 1992~1997. The model shows a good Nash-Sutcliffe efficiency and volume difference in calibration(0.86% and 0.90%) and validation(0.78% and 6.85%). Contribution of snow and ice melt in discharge is 32.37% in calibration period and 33.01% is validation period. The model is also used to predict future hydrological regime up to 2099 by using CORDEX South Asia RCM considering RCP4.5 and RCP8.5 climate scenarios.Predicted future snow and ice melt contributions in both RCP4.5 and RCP8.5 are 36% and 37%, respectively. Temperature seems to be more sensitive as compared to other input variables, which is why the contribution of snow and ice in discharge varies significantly throughout the whole century.  相似文献   

7.
An Arctic Ocean eddy in sub-surface layer is analyzed in this paper by use of temperature,salinity and current profiles data obtained at an ice camp in the Canada Basin during the second Chinese Arctic Expedition in summer of 2003.In the vertical temperature section,the eddy shows itself as an isolated cold water block at depth of 60 m with a minimum temperature of-1.5℃,about 0.5℃ colder than the ambient water.Isopycnals in the eddy form a pattern of convex,which indicates the eddy is anticyclonic.Although maximum velocity near 0.4 m s-1 occurs in the current records observed synchronously,the current pattern is far away from a typical eddy.By further analysis,inertial frequency oscillations with amplitudes comparable with the eddy velocity are found in the sub-surface layer currents.After filter the inertial current and mean current,an axisymmetric current pattern of an eddy with maximum velocity radius of 5 km is obtained.The analysis of the T-S characteristics of the eddy core water and its ambient waters supports the conclusion that the eddy was formed on the Chukchi Shelf and migrated northeastward into the northern Canada Basin.  相似文献   

8.
The extensive debris that covers glaciers in the ablation zone of the Himalayan region plays an important part in regulating ablation rates and water availability for the downstream region. The melt rate of ice is determined by the amount of heat conducted through debris material lying over the ice. This study presents the vertical temperature gradients, thermal properties in terms of thermal diffusivity and thermal conductivity, and positive degree-day factors for the debris-covered portion of Lirung Glacier in Langtang Valley, Nepal Himalaya using field-based measurements from three different seasons.Field measurements include debris temperatures at different debris thicknesses, air temperature, and ice melt during the monsoon(2013), winter(2013), and pre-monsoon(2014) seasons. We used a thermal equation to estimate thermal diffusivity and thermal conductivity, and degree-day factors(DDF) were calculated from cumulative positive temperature and ice melt of the measurement period. Our analysis of debris temperature profiles at different depths of debris show the daily linear gradients of-20.81 °C/m, 4.05 °C/m, and-7.79 °C/m in the monsoon, winter, and pre-monsoon seasons, respectively. The values of thermal diffusivity and thermal conductivity in the monsoon season were 10 times greater than in the winter season. The large difference in these values is attributed to surface temperature and moisture content within the debris. Similarly, we found higher values of DDFs at thinner debris for the pre-monsoon season than in the monsoon season although we observed less melting during the pre-monsoon season. This is attributed to higher cumulative temperature during the monsoon season than in the pre-monsoon season. Our study advances our understanding of heat conductivity through debris material in different seasons, which supports estimating ice melt and discharge from glacierized river basins with debris-covered glaciers in the Himalayan region.  相似文献   

9.
Hussain  Mian Sabir  Heo  Inhye  Im  Sujeong  Lee  Seungho 《地理学报(英文版)》2021,31(3):369-388
This paper presents a detailed account of the effect of shipping activity on the increasing trends of air temperatures in the Canadian Arctic region for the period of 1980–2018. Increasing trend of temperature has gained significant attention with respect to shipping activities and sea ice area in the Canadian Arctic. Temperature, sea ice area and shipping traffic datasets were investigated, and simple linear regression analyses were conducted to predict the rate of change(per decade) of the average temperature, considering winter(January) and summer(July) seasons. The results indicate that temperature generally increased over the studied region. Significant warming trend was observed during July, with an increase of up to 1℃, for the Canadian Arctic region. Such increasing trend of temperature was observed during July from the lower to higher latitudes. The increase in temperature during July is speculated to increase the melting of ice. Results also show a decline in sea ice area has a significant positive effect on the shipping traffic, and the numbers of marine vessel continue to increase in the region. The increase in temperature causes the breaking of sea ice due to shipping activities over northern Arctic Canada.  相似文献   

10.
中国西北干旱内陆河流域分布式出山径流模型   总被引:1,自引:0,他引:1  
In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover,etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km^2. The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years‘ data are used to simulate, while the last 5 years‘ data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681,5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapoWanspimtion decrease of the watershed, adjust the runoff orocess, and increase the soil water content.  相似文献   

11.
Summary For four years continuous recording of infrasonic signals in the frequency range 0.1 to 1 Hz, known as microbaroms, has been conducted at Palisades, New York. The microbaroms we recorded are radiated into the atmosphere by interfering ocean waves in the North Atlantic as far as 2000 km away. A characteristic diurnal variation in the amplitude of the received signal has been noted, independent of any variation in the source. We conclude that the variation is due to variations of the factors affecting atmospheric sound propagation, namely wind and temperature.
In winter a semidiurnal variation in signal amplitude is observed, with maximum reception around 11 : 00 and 22; 00 local time. Reference to wind and temperature observations in the literature shows that at these times the lowest level of reflection of the vertically propagating signal occurs between 100 and 110 km due to the presence of strong east winds. At 18 : 00, time of minimum amplitudes, the reflection level rises to about 115 km because of a change in tidal wind phase. Viscous dissipation associated with the changed reflection height can account for the observed signal weakening. A third maximum, a less regular effect, is found to be related to more variable winds between 95 and 105 km.
In summer, reflection is found to occur from about 50 km due to the presence of stratospheric easterlies. The summer diurnal variation, different from that of the winter, exhibits only a weak minimum about 20 : 00. This appears to result from a diurnal temperature variation superimposed on a diurnal wind variation. Abnormally high microbaroms were recorded at times that can be related to an atmospheric event known as a stratospheric warming. Microbaroms thus provide a continuously available natural mechanism for probing the upper atmosphere. We conclude that the establishment of microbarom observation systems could give a comprehensive technique for monitoring several upper atmospheric parameters.  相似文献   

12.
Chapman 等大气潮汐专家认为,地球表面的太阳潮汐全口波被抑制,而半口波被放大,这个结论一直延续数十年。然而,根据南极地区三个站的资料计算表明:在南极地区,地面太阳气压潮汐的全日波远强于半日波,这与高登义等(1986)应用我国205个台站资料计算结果是一致的。 上述结果表明,南极地区近地面太阳气压潮汐全日波并未被抑制,而半日波也未被放大。这与Chapman等人的结论是不一致的。  相似文献   

13.
The quiet-day geomagnetic field variation data from the recently commissioned Nagpur geomagnetic observatory, which has augmented the currently active latitudinal chain of Indian magnetic observatories, are analysed for the year 1993- The variations for diurnal frequencies (Sq) recorded at Nagpur do not follow the expected trend with latitude. This is most conspicuous in the northward horizontal ( X ) component. The anomalous behaviour at Nagpur is also seen in the diurnal harmonic amplitudes when compared with those of the neighbouring stations Alibag (south of Nagpur) and Ujjain (north of Nagpur). This behaviour is attributed to the presence of electrically conducting anomalous sources in the vicinity of Nagpur. The anomalous internal source is inferred to be located at relatively shallower depths and is highly localized.  相似文献   

14.
本文利用1986年南极长城站的哨声观测资料,对磁暴期间的哨声活动、哨声发生率的日变化、季节变化及磁静日和磁扰日色散值的变化作了统计分析。结果表明,磁暴开始后20~27小时哨声发生率开始增加,逐渐达到最大值,持续5~15小时后下降到正常值。哨声发生率有着明显的日变化(有两个活动高峰)和季节变化(活动高峰期为地方冬季6~8月份)。色散值的日变化与地磁活动性有密切关系,在磁静日,色散值日变幅很小,在磁扰日色散值较大,其分布较分散。  相似文献   

15.
夏季不同天气条件下沙漠辐射和能量平衡的对比分析   总被引:4,自引:0,他引:4  
利用2009 年7 月24 日-9 月12 日“巴丹吉林沙漠陆-气相互作用观测试验”资料,对比分析了典型晴天和阴天下巴丹吉林沙漠地表辐射、能量平衡和土壤温度的日变化规律.结果表明:①巴丹吉林沙漠典型晴天条件下总辐射、地表反射辐射、地表长波辐射、有效辐射、净辐射的峰值和日积分值都比典型阴天条件下大,大气长波辐射比阴天条件下小.两种天气条件下净辐射日积分值占太阳总辐射的1/3.②沙漠地区典型晴天地表反射率呈U型,白天均值为0.32;阴天变化较平缓,均值为0.29.③两种天气条件下地表热量平衡都以感热输送为主,波文比分别为4.55 和1.16.晴天不平衡能量达到净辐射的20%,阴天为30%.④晴天条件下有效能量夜间为负值,白天为正值,阴天全天为正值;湍流能量全天均为正值.能量闭合度(EBR)晴天平均为0.68,阴天为0.76.⑤土壤温度5~10 cm日较差逐渐减小,20、40 cm日变化不明显;5 cm土壤热通量日变化较大,20 cm土壤热通量振幅较小.  相似文献   

16.
杨泽粟  张强  赵鸿 《中国沙漠》2014,34(4):1055-1063
于2011年在黄土高原半干旱地区以平地不覆膜为对照,研究了不同沟垄和覆膜方式对马铃薯叶片和土壤水势水势的影响。结果表明:不同沟垄和覆膜方式在不同土层和不同生育期对土壤和叶片水势的影响差异显著。(1)土壤水势日变化趋势:0~20 cm土层,土垄处理在开花期为先下降后上升型,土垄和覆膜垄处理在块茎膨大期为先下降后上升型,覆膜垄和全膜双垄沟播处理在成熟期为先下降后上升型,其余为逐渐下降型;20~40 cm土层,各处理土壤水势呈逐渐下降趋势。(2)叶片水势日变化趋势:开花期和块茎膨大期表现为双低谷型,双低谷分别在13:00和17:00,成熟期为“V”型,即单低谷型,低谷出现在17:00。各处理变化趋势相同,但水势存在差异。土垄处理在水分关键期(开花期和块茎膨大期)叶片水势显著高于其他处理,而全膜双垄沟播处理在成熟期最高。(3)生育期土壤水势和叶片水势均表现为先减小后增大的趋势。20~40 cm土层对叶片水势影响较大,土垄处理在该土层具有较好的水分状态,蒸腾作用较强加速了水分运移速率,是导致覆膜垄和全膜双垄沟播处理水势低于土垄的主要原因。在前期降雨较少的年份,由于较小的蒸腾作用,土垄处理可以保证马铃薯承受较小的水分胁迫;在前期降雨量较多的年份,覆膜垄和全膜双垄沟播处理则可以凭借其较大的蒸腾作用发挥较大的增产效果。  相似文献   

17.
南北极冬季F2层电离层特性对比研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用南极中山站和北极Tromso站1996、1997、1998及2002年的测高仪观测数据,对中山站(6月份)和Tromso站(12月份)上空冬季foF2的日变化特性进行了对比研究,结合数值模拟结果,分析了中山站和Tromso站F2层电离层的极区特征,进一步揭示了极区电离层特征的形成机理。结果表明,中山站和Tromso站虽然地理纬度接近,foF2日变化形成机理不完全相同。由于地磁纬度的差异,极区对流与日侧光致电离的相互作用造成了两站日侧电离层的不同变化形态,中山站foF2日变化主峰出现在磁地方时中午附近,而Tromso站foF2日变化主峰出现在地方时正午附近;两站日侧foF2受太阳辐射流量影响较大,极光沉降粒子电离在太阳活动低年对中山站foF2日变化形态影响显著。  相似文献   

18.
利用2008—2015年CMORPH卫星与自动观测站的逐时降水量融合产品,分析了陕西地区5~10月降水量、降水频次、降水强度的日变化特征,以及陕西南北降水日变化上的差异。结果表明:(1)降水量和降水频次从南向北明显递减,地形作用下的纬向变化是陕西地区降水最重要的特征,但降水强度呈现出南北高、中间低的分布特征,两个高值中心分别位于陕南南部和陕北的东北部,EOF分析表明陕西南部夜雨特征明显。(2)陕西南部降水量和降水频次、降水强度日变化特征一致,均以夜晚至次日清晨为高值区, 而在中午前后达到最低值。陕西北部降水量、降水频次峰值则主要出现在上午,降水强度峰值出现在傍晚。区域对比分析表明,陕西南部降水量日变化主要来自于降水强度的贡献,而陕西北部日变化以降水频次的贡献为主。(3)陕西降水的南北分界线特征明显,34 °N以南地区降水日变化明显且降水主要集中在夜间。34~37 °N之间的中部地区降水日变化较弱,37 °N以北地区降水的日变化特征和陕西南部相反。(4)除榆林、渭南和商洛东部地区外,其他大部分地方白天的降水量都明显低于夜间的降水量,特别是陕南秦巴山区夜间降水量超过白天的一倍以上。  相似文献   

19.
夏季晴天沼泽湿地贴地气层气温和相对湿度日变化特征   总被引:1,自引:1,他引:1  
2008年6~8月在洪河国家级自然保护区沼泽湿地0~15 m贴地气层内,进行了6个高度的气温和相对湿度的野外定位观测.根据实测数据,分析了夏季晴天沼泽湿地贴地气层的气温和相对湿度的日变化特征.结果表明,夏季晴天沼泽湿地贴地气层内,气温日变化曲线为单峰型曲线,各高度的日最高气温和日最低气温分别出现在14∶00和03∶00,日平均气温和气温日较差都随高度递减.气温廓线有夜间辐射型、早上过渡型、白天日射型及傍晚过渡型4种分布类型.夏季晴天,0.5~15 m的日平均气温直减率为0.10 ℃/m,5个梯度的日平均气温直减率分别为1.03 ℃/m(0.5~1.5 m)、0.41 ℃/m(1.5~3 m)、0.03 ℃/m(3~5 m)、-0.01 ℃/m(5~8 m)和-0.03 ℃/m(8~15 m).相对湿度日变化曲线呈U型曲线,各高度的日最大相对湿度和日最小相对湿度分别出现在03∶00和14∶00,日平均相对湿度随高度变化不显著,相对湿度日较差随高度递减.相对湿度廓线有夜间和日间2种分布类型,日间在0~8 m出现逆湿,最强逆湿出现在11∶00~13∶00.日间逆湿为沼泽湿地植物蒸腾作用影响的结果.夏季晴天,0.5~15 m的日平均相对湿度直减率为0.16%/m,5个梯度的日平均相对湿度直减率分别为-2.73%/m(0.5~1.5 m)、1.43%/m(1.5~3 m)、-0.02%/m(3~5 m)、0.06%/m(5~8 m)和0.39%/m(8~15 m).  相似文献   

20.
Cloud-to-ground (CG) lightning observations for the warm seasons (May-September) of 1989 and 1990 were analyzed for the Great Lakes region in order to assess the diurnal variations in the lightning characteristics. Several parameters, including flash rate, the spatial extent of lightning activity, first stroke peak current, and the percentage of positive flashes, varied markedly over the course of the day. In contrast, other parameters, such as the frequency of lightning periods and the multiplicity of both negative and positive CG flashes, displayed little diurnal variation. A large degree of intraseasonal (i.e., month-to-month) variation was observed in the diurnal patterns for several of the lightning parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号