首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the effect of geomagnetic storm on geomagnetic field components at Southern (Maitri) and Northern (Kiruna) Hemispheres. The Indian Antarctic Station Maitri is located at geom. long. 66.03° S; 53.21° E whereas Kiruna is located at geom. long. 67.52° N; 23.38° E. We have studied all the geomagnetic storms that occurred during winter season of the year 2004–2005. We observed that at Southern Hemisphere the variation is large as compared to the Northern Hemisphere. Geomagnetic field components vary when the interplanetary magnetic field is oriented in southward direction. Geomagnetic field components vary in the main phase of the ring current. Due to southward orientation of vertical component of IMF reconnection takes place all across the dayside that transports plasma and magnetic flux which create the geomagnetic field variation.  相似文献   

2.
During very intense geomagnetic storm of November 7–8, 2004 simultaneous presence of storm time disturbance dynamo and eastward and westward directed prompt penetration electric fields inferred from the ground based magnetometer data in the 75° E sector is presented. Magnetometer observations show that, on the whole, average ΔH variation on 8 November remains below the night time level compared to its quiet day variation. A number of upward and downward excursions have been observed between 0130 UT and 0800 UT in the ΔH variation on 8 November. These excursions in ΔH have been attributed to the episodes of eastward and westward prompt penetrating electric fields. Ionospheric response in the equatorial ionization anomaly region along 75° E has also been studied using the total electron content data recorded at five GPS stations, namely Udaipur, Bengaluru (IISC), Hyderabad (HYDE), Maldives (MALD) and Diego Garcia (DGAR). Observation of markedly suppressed EIA, in conjunction with ΔH variation which was m negative during the daytime on 8 November, indicates the presence of an external field of opposite polarity (the disturbance dynamo electric field) that either undermined, or overshadowed the daytime ambient (eastward) electric field to the extent that the equatorial plasma fountain could not become effective.  相似文献   

3.
The present paper analyzes the dual frequency signals from GPS satellites recorded at Varanasi (Geographic latitude 25°, 16′ N, longitude 82°, 59′ E) near the equatorial ionization anomaly (EIA) crest in India, to study the effect of geomagnetic storm on the variation of TEC, during the low solar active period of May 2007 to April 2008. Three most intense—but still moderate class—storms having a rapid decrease of Dst-index observed during the GPS recorded data have been analyzed, which occurred on 20 November 2007, 9 March 2008 and 11 October 2008 were selected and storm induced features in the vertical TEC (VTEC) have been studied considering the mean VTEC value of quiet days as reference level. The possible reasons for storm time effects on VTEC have been discussed in terms of local time dependence, storm wind effect as well as dawn-dusk component of interplanetary electric field (IEF) Ey intensity dependence.  相似文献   

4.
The purpose of this work is to investigate the effect of magnetic activity on ionospheric time delay at low latitude Station Bhopal (geom. lat. 23.2°N, geom. long. 77.6°E) using dual frequency (1575.42 and 1227.60 MHz) GPS measurements. Data from GSV4004A GPS Ionospheric Scintillation and TEC monitor (GISTM) have been chosen to study these effects. This paper presents the results of ionospheric time delay during quiet and disturbed days for the year 2005. Results show that maximum delay is observed during quiet days in equinoxial month while the delays of disturbed period are observed during the months of winter. We also study the ionospheric time delay during magnetic storm conditions for the same period. Results do not show any clear relationship either with the magnitude of the geomagnetic storm or with the main phase onset (MPO) of the storm. But most of the maximum ionospheric time delay variations are observed before the main phase onset (MPO) or sudden storm commencement (SSC) as compared to storm days.  相似文献   

5.
We investigate the effects of two magnetic clouds on hourly cosmic-ray intensity profiles in the Forbush decrease events in November 2004 observed by 47 ground-based neutron-monitor stations. By using a wavelet decomposition, the start time of the main phase in a Forbush decrease event can be defined, and then clearer definitions of initial phase, main phase, and recovery phase are proposed. Our analyses suggest that the main phase of this Fd event precedes the arrival time of the first magnetic cloud by about three hours, and the Fds observed at the majority (39/47) of the stations were found to originate from the sheath region as indicated by large fluctuations in magnetic field vectors at 19:00 UT on 7 November 2004, regardless of the station location. In addition, about 45% of the onset times of the recovery phase in the Forbush decreases took place at 04:00 UT on 10 November, independent of the station position. The results presented here support the hypothesis that the sheath region between the shock and the magnetic cloud, especially the enhanced turbulent magnetic field, results in the scattering of cosmic-ray particles, and causes the following Forbush decreases. Analysis of variation profiles from different neutron monitors reveals the global simultaneity of this Forbush decrease event. Moreover, we infer that the interplanetary disturbance was asymmetric when it reached the Earth, inclined to the southern hemisphere. These results provide several observational constraints for more detailed simulations of the Forbush decrease events with time-dependent cosmic-ray modulation models.  相似文献   

6.
The paper is based on the ionospheric variations in terms of vertical total electron content (VTEC) for the low solar activity period from May 2007 to April 2009 based on the analysis of dual frequency signals from the Global Positioning System (GPS) satellites recorded at ground stations Varanasi (Geographic latitude 25°16′ N, Longitude 82°59′ E), situated near the equatorial ionization anomaly crest and other two International GNSS Service (IGS) stations Hyderabad (Geographic latitude 17°20′ N, longitude 78°30′ E) and Bangalore (Geographic latitude 12°58′ N, longitude 77°33′ E) in India. We describe the diurnal and seasonal variations of total electron content (TEC), and the effects of a space weather related event i.e. a geomagnetic storm on TEC. The mean diurnal variation during different seasons is brought out. It is found that TEC at all the three stations is maximum during equinoctial months (March, April, September and October), and minimum during the winter months (November, December, January and February), while obtaining intermediate values during summer months (May, June, July and August). TEC shows a semi-annual variation. TEC variation during geomagnetic quiet as well as disturbed days of each month and hence for each season from May 2007 to April 2008 at Varanasi is examined and is found to be more during disturbed period compared to that in the quiet period. Monthly, seasonal and annual variability of GPS-TEC has been compared with those derived from International Reference Ionosphere (IRI)-2007 with three different options of topside electron density, NeQuick, IRI01-corr and IRI 2001. A good agreement is found between the GPS-TEC and IRI model TEC at all the three stations.  相似文献   

7.
Responses of the polar ionosphere to the Bastille Day solar event   总被引:1,自引:0,他引:1  
Liu  Rui-yuan  Hu  Hong-qiao  Liu  Yong-hua  Xu  Zhong-hua  Sato  N.  Fraser  B.J. 《Solar physics》2001,204(1-2):305-313
Simultaneous observations at Zhongshan Station, Antarctica, are presented for the interval of 13–17 July 2000 to show responses of the polar ionosphere to the Bastille Day (14 July 2000) solar event. The polar ionosphere was highly disturbed, as shown by frequently large deviations of the geomagnetic H-component, large riometer absorption events and strong ULF waves. Associated with the huge solar proton event produced by the X5/3B flare, a polar cap absorption (PCA) was observed. It began at ∼ 10:40 UT on 14 July and ended at ∼ 19:40 UT on 17 July. Superposed on it, there was a large absorption event with a peak of 26 dB, starting at ∼ 03:00 UT and ending at ∼ 11:10 UT on 15 July. This kind of absorption was probably produced by an intense `cloud of energetic electrons' during an auroral substorm. The ULF waves were very intense during the main phase and the recovery phase of the severe magnetic storm on 15 and 16 July. The ionospheric absorption was so strong that the digisonde signal was blacked out most of the time. The ionosphere returned to normal in the afternoon on 17 July.  相似文献   

8.
Chen  Hong-Fei  Xu  Wen-Yao  Chen  Geng-Xiong  Hong  Ming-Hua  Peng  Feng-Lin 《Solar physics》2001,204(1-2):339-349
In this paper geomagnetic disturbances at middle and low latitudes are discussed by using geomagnetic data of the magnetic storm of 15–16 July 2000. This storm is a response to the solar Bastille Day flare on 14 July. Generally, the geomagnetic disturbances at middle and low latitudes during a storm are mainly caused by three magnetospheric–ionospheric current systems, such as the ring current system (RC), the partial ring current and its associated region II field-aligned currents (PR), and the region I field-aligned currents (FA). Our results show that: (1) The northward turning of IMF-Bz started the sudden commencement of the storm, and its southward turning caused the main phase of the storm. (2) The PR- and FA-currents varied violently in the main phase. In general, the field of the FA-current was stronger than that of the PR-current. (3) In the first stage of the recovery phase, the RC-field gradually turned anti-parallel to the geomagnetic axis from a 15° deviation, and the local time (Λ) pointed by the RC-field stayed at 16:00. After that, Λ rotated with the stations, and the RC-field was not anti-parallel to the geomagnetic axis, but 5°–10° deviated. These facts suggest that the warped tailward part of the ring current decays faster than the symmetric ring current.  相似文献   

9.
We analyse data obtained by different ground-based video camera systems during the 1999 Leonid meteor storm. We observe similar activity profiles at nearby observing sites, but significant differences over distances in the order of 4,000 km. The main peak occured at 02:03 UT (λ=235.286, J2000, corrected for the time of the topocentric stream encounter). At the Iberian peninsula quasi-periodic activity fluctuations with a period of about 7 min were recorded. The camera in Jordan detected a broad plateau of activity at 01:39–01:53 UT, but no periodic variations. The Leonid brightness distribution derived from all cameras shows a lack of faint meteors with a turning point close to +3m, which corresponds to meteoroids of approximately 10-3 g. We find a pin-point radiant at αalpha=153.65 ±0.1, δ=21.80 ±0. (λ=235.290). The radiant positionis identical before and after the storm, and also during the storm no driftis observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The present study examines the ionospheric Total Electron Content (TEC) variations in the lower mid-latitude Turkish region from the Turkish permanent GNSS network (TPGN) and International GNSS Services (IGS) observations during the years 2009 to 2017. The corresponding vertical TEC (VTEC) predicted by Kriging and NeQuick-2 models are evaluated to realize their efficacy over the country. We studied the diurnal, seasonal and spatial pattern of VTEC variation and tried to estimate by a new mathematical model using the long term of 9 years VTEC data. The diurnal variation of VTEC demonstrates a normal trend with its gradual enhancement from dawn to attain a peak around 09:00–14.00 UT and reaching the minimum level after 22.00 UT. The seasonal behavior of VTEC indicates a strong semi-annual variation of VTEC with maxima in September equinox followed by March equinox and minima in June solstice followed by December solstice. Also, the spatial variation in VTEC depicts a meaningful longitudinal/latitudinal pattern altering with seasons. It decreases longitudinally from the west to the east during March equinox and June solstice increases with latitude. The comparative analysis among the GNSS-VTEC, Kriging, NeQuick and the proposed mathematical model are evaluated with the help one way ANOVA test. The analysis shows that the null hypothesis of the models during storm and quiet days are accepted and suggesting that all models are statistically significantly equivalent from each other. We believe the outcomes from this study would complement towards a relatively better understanding of the lower mid-latitude VTEC variation over the Turkish region and analogous latitudes over the globe.  相似文献   

11.
Effects of solar wind parameters on the development of substorms during the events of southward interplanetary magnetic field (IMF) lasting more than one hour were studied. Analysis on 175 events with average magnitude of the southward component of IMF larger than l·5γ as observed in July–December 1965 lead to the following results: (1) The total auroral electrojet (AEJ) current associated with the southward IMF event is approximately proportional to the time integral of the magnitude of the southward component. (2) The azimuthal component of IMF also affects the AEJ development. AEJ about twice as intense were observed when IMF was directed duskward than when IMF was directed dawnward. (3) AEJ intensity is strongly affected by the solar wind velocity during the southward IMF events, the intensity being approximately proportional to the square of the velocity. (4) No indication was found that the angle between the Sun-Earth line and the Earth's dipole axis plays any role on the development of substorms if effects of the solar wind parameters as described above are eliminated.  相似文献   

12.
On 4 July 2004 UT, we detected one of Uranus' southern hemispheric cloud features at K′ (2.12 μm); this is the first such detection in half a decade of adaptive optics imaging of Uranus at the Keck 10-m telescope. When we observed again on 8 July UT the feature's bright core had faded. By 9 July UT it was not seen at K′ and barely detectable at H. The detection and subsequent disappearance of the feature indicates rapid dynamical processes in the localized vertical aerosol structure.  相似文献   

13.
We present a study of the plasma properties inside and dynamics of the low-latitude boundary layer (LLBL)/cusp during the ICME event on 7 November 2004 based on data from the four Cluster spacecraft. The interplanetary magnetic field (IMF) is predominantly strongly northward, up to 50 nT, with some short-duration rotations. The observed LLBL/cusp is very thick (∼6 – 7° invariant latitude (ILAT)) and migrates equatorward with rates of 0.55° and 0.04° ILAT per minute during quick southward IMF rotations and stable northward IMF, respectively. The LLBL/cusp observed by Cluster 1 and Cluster 4 is in a fast transition between different states and is populated by different types of plasma injection, presumably coming from multiple reconnection sites. During a period of extremely northward IMF, signatures of pulsed dual reconnection inside the LLBL/cusp are observed by Cluster 3, suggesting that at least part of the LLBL/cusp is on closed field lines. However, analysis of the ion data implies that the boundary layer is formed in the dawn sector of the magnetosphere and does not slowly convect from the dayside as has been suggested previously. A statistical study of the location of the LLBL/cusp equatorward boundary during the ICME events on 28 – 29 October 2003 and 7 – 10 November 2004 is performed. During extreme conditions the LLBL/cusp position is offset by −7° ILAT from the location under normal conditions, which might be explained by the influence of the high solar wind dynamic pressure. The LLBL/cusp moves equatorward with increasing southward and northward IMF. However, the LLBL/cusp position under strong southward IMF is more poleward than expected from previous studies, which could indicate some saturation in the dayside reconnection process or enhancement of the nightside reconnection rate. The LLBL/cusp position under strong northward IMF is extremely low and does not agree with the location predicted in previous studies. For the events with solar wind dynamic pressure >10 nPa, the LLBL/cusp position does not depend on the solar wind dynamic pressure. This might indicate some saturation in the mechanism of how the LLBL/cusp location depends on the solar wind dynamic pressure.  相似文献   

14.
The solar soft X-ray (XUV) radiation is important for upper atmosphere studies as it is one of the primary energy inputs and is highly variable. The XUV Photometer System (XPS) aboard the Solar Radiation and Climate Experiment (SORCE) has been measuring the solar XUV irradiance since March 2003 with a time cadence of 10 s and with about 70% duty cycle. The XPS measurements are between 0.1 and 34 nm and additionally the bright hydrogen emission at 121.6 nm. The XUV radiation varies by a factor of ∼2 with a period of ∼27 days that is due to the modulation of the active regions on the rotating Sun. The SORCE mission has observed over 20 solar rotations during the declining phase of solar cycle 23. The solar XUV irradiance also varies by more than a factor of 10 during the large X-class flares observed during the May–June 2003, October–November 2003, and July 2004 solar storm periods. There were 7 large X-class flares during the May–June 2003 storm period, 11 X-class flares during the October–November 2003 storm period, and 6 X-class flares during the July 2004 storm period. The X28 flare on 4 November 2003 is the largest flare since GOES began its solar X-ray measurements in 1976. The XUV variations during the X-class flares are as large as the expected solar cycle variations.  相似文献   

15.
On February 8, 1974, Skylab 1 was manoeuvred into a near circular orbit of inclination 50.04° and perigee near 420km. Orbital parameters have been computed at forty-six epochs thereafter using all available observations. Using these orbital elements, supplemented by orbital decay rates derived from NORAD bulletins, 193 values of air density were determined between 23 February, 1974 and 11, August, 1976. Corrected to a fixed height and normalised with respect to exospheric temperature these values reveal the semi-annual variation, exhibiting maxima in March–April and October–November, and minima in January–February and July–August. For 1974–1976 the July minima are more pronounced than the January minima whilst the April and October maxima appear equal. Overall the variation is greater than that indicated by CIRA 1972.  相似文献   

16.
Near-infrared photometric and polarimetric observations of comet Hale-Bopp (1995 O1) using KONIC (Kiso Observatory Near-Infrared Camera) are reported. Observations were carried out on March 18 UT and April 26 UT 1997, when the heliocentric distances of the comet were 0.94 and 1.02 AU, and the phase angles were 48.5 deg and 32.9 deg, respectively. In the J, H, and K′ bands, we obtained linear polarization of the near-nucleus region of 16.4 ± 1.2, 18.8 ± 1.3, and 15.1 ± 0.9 percent on March 18UT and 7.1 ± 1.1, 8.9 ± 1.0, and 6.9 ± 0.6 percent on April 26, respectively. These values were higher than those observed for 1P/Halley. The maximum polarization was found at H band on both dates. Polarization maps showed higher polarization regions toward the anti-solar direction in the J and H bands. No distinct correlation was found between high polarization regions and bright regions. The projected expansion velocity of the arc structure of the dust jet was 375 ± 35.7 m/s on 17–19 March. The periodicity was found to be 11.1 ± 2.8 hours. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Variations in air density have been determined using the orbit of the satellite Cosmos 462, 1971-106A, which entered orbit on 3 December 1971 with an initial perigee near 230 km and inclination 65.75°, and decayed on 4 April 1975. Accurate orbits determined at 85 epochs give perigee height correct to about 200 m throughout the satellite's lifetime. Using these values of perigee height and orbital decay rates from NORAD elements, 604 values of air density at half a scale height above perigee have been evaluated. These densities have been compared with values from the COSPAR International Reference Atmosphere 1972, taking account of variations due to solar activity and geomagnetic disturbances, and day-to-night variations, to reveal the residual variations in density at a series of standard heights, 245, 240, 232 and 213 km.The main residual variation is semi-annual, with maxima usually in April and October, and minima usually in January and July; but it is irregular in phase and shape. The amplitude of the semi-annual variation is remarkably constant from year to year between 1972 and 1975, and considerably greater than that given by CIRA 1972: the April/July density ratio is 1.68, not 1.32 as in CIRA; the October–November maxima are all lower than the April maxima, whereas CIRA gives the opposite; the July minima are 18% lower than the January minima, as opposed to 10% in CIRA.A standardized semi-annual density variation for the early 1970s is presented, with January minimum of 0.94, April maximum of 1.28, July minimum of 0.77 and October–November maximum of 1.22. In addition, three other recurrent variations are recognizable: in each year the density has a subsidiary minimum in May and maximum in June; there are low values in mid November and high values in late December.  相似文献   

18.
The skewness of the monthly distribution of GSE latitudinal angles of Interplanetary Magnetic Field (IMF) observed near the Earth (Sk) is found to show anti-correlation with sunspot activity during the solar cycles 20–24. Sk can be considered as a measure of the predominant polarity of north-south component of IMF (Bz component) in the GSE system near 1 AU. Sk variations follow the magnitude of solar polar magnetic fields in general and polarity of south polar fields in particular during the years 1967–2020. Predominant polarity of Sk is found to be independent of the heliographic latitude of Earth. Sk basically reflects the variations of the solar dipolar magnetic field during a sunspot cycle. It is also found that IMF sector polarity variation is not a good indicator of the magnitude changes in solar polar magnetic fields during a sunspot cycle. This is possibly due to the influence of non-dipolar components of the solar magnetic field and the associated north-south asymmetries in the heliospheric current sheet.  相似文献   

19.
The pressure corrected hourly data from the global network of cosmic ray detectors, measurements of the interplanetary magnetic field (IMF) intensity (B) at Earth’s orbit and its components B x , B y , B z (in the geocentric solar ecliptic coordinates) are used to conduct a comprehensive study of the galactic cosmic ray (GCR) intensity fluctuations caused by the halo coronal mass ejection of 13 May 2005. Distinct differences exist in GCR timelines recorded by neutron monitors (NMs) and multidirectional muon telescopes (MTs), the latter respond to the high rigidity portion of the GCR differential rigidity spectrum. The Forbush decrease (FD) onset in MTs is delayed (~5 h) with respect to the onset of a geomagnetic storm sudden commencement (SSC) and a large pre-increase is present in MT data before, during, and after the SSC onset, of unknown origin. The rigidity spectrum, for a range of GCR rigidities (≤200 GV), is a power law in rigidity (R) with a negative exponent (γ=?1.05) at GCR minimum intensity, leading us to infer that the quasi-linear theory of modulation is inconsistent with observations at high rigidities (>1 GV); the results support the force field theory of modulation. At present, we do not have a comprehensive model for the FD explaining quantitatively all the observational features but we present a preliminary model listing physical processes that may contribute to a FD timeline. We explored the connections between different phases of the FD and the power spectra of IMF components but did not find a sustained relationship.  相似文献   

20.
Brandt  P. C: Son  Mitchell  D.G.  Roelof  E.C.  Burch  J.L. 《Solar physics》2001,204(1-2):377-386
Global images of the Earth's inner magnetosphere and its response to the coronal mass ejection (CME) on the 15 July 2000 were obtained by the IMAGE spacecraft. The images were taken in energetic neutral atoms (ENA) by the High-Energy Neutral Atom (HENA) imager. ENAs are produced by charge exchange between the hot ion population of the magnetosphere and the cold neutral hydrogen geocorona. The ENA images show how plasma is injected into the nightside magnetosphere as the interplanetary magnetic field (IMF) turns strongly southward. As the IMF B z increases and the storm intensity decreases, the ENA images show that the ring current becomes closed and symmetric as IMF B z reaches positive values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号