首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Solar flare accelerated electrons escaping into the interplanetary space and seen as type III solar radio bursts are often detected near the Earth. Using numerical simulations we consider the evolution of energetic electron spectrum in the inner heliosphere and near the Earth. The role of Langmuir wave generation, heliospheric plasma density fluctuations, and expansion of magnetic field lines on the electron peak flux and fluence spectra is studied to predict the electron properties as could be observed by Solar Orbiter and Solar Probe Plus. Considering various energy loss mechanisms we show that the substantial part of the initial energetic electron energy is lost via wave–plasma processes due to plasma inhomogeneity. For the parameters adopted, the results show that the electron spectrum changes mostly at the distances before ~?20 R . Further into the heliosphere, the electron flux spectrum of electrons forms a broken power law relatively similar to what is observed at 1 AU.  相似文献   

2.
A slitless UBVR spectrograph has been built for use on small telescopes. Test observations on the Zeiss-600 telescope at the Terskol peak demonstrated that the spectrograph is an efficient instrument for studying high-speed processes in variable stars with a high temporal resolution. The spectrograph resolving power R ≈ 100 in the vicinity of λ = 480 nm and the error in the determination of the wavelength is approximately 3 nm. The spectrograph provides a moderate signal-to-noise ratio for stars up to 16 m . It permits one to measure equivalent widths of unblended lines down to 0.1 nm. The developed special software based on the theory of quantum statistics makes it possible to detect relative variations in the spectrum of approximately 10?5–10?6 of the bolometric flux of the star. Observations with the spectrograph made it possible to detect variations of emissions in Balmer lines and Ca II H, K lines in the EV Lac flare star in the subsecond range. The spectroscopic monitoring permits one to study stellar flares with small amplitude, to carry out a comprehensive colorimetric analysis of flare plasma, and to determine temperatures and sizes of flares in the light intensity maximum. Observations of the transit of the HAT-P-1 B exoplanet demonstrate that the chromospheric activity power of the parent star does not vary during the transit. The slitless spectrograph with a low resolving capacity opens new prospects in studying active processes occurring on stars’ surfaces.  相似文献   

3.
Sequences of line-of-sight (LOS) magnetograms recorded by the Michelson Doppler Imager are used to quantitatively characterize photospheric magnetic structure and evolution in three active regions that rotated across the Sun??s disk during the Whole Heliosphere Interval (WHI), in an attempt to relate the photospheric magnetic properties of these active regions to flares and coronal mass ejections (CMEs). Several approaches are used in our analysis, on scales ranging from whole active regions, to magnetic features, to supergranular scales, and, finally, to individual pixels. We calculated several parameterizations of magnetic structure and evolution that have previously been associated with flare and CME activity, including total unsigned magnetic flux, magnetic flux near polarity-inversion lines, amount of canceled flux, the ??proxy Poynting flux,?? and helicity flux. To catalog flare events, we used flare lists derived from both GOES and RHESSI observations. By most such measures, AR 10988 should have been the most flare- and CME-productive active region, and AR 10989 the least. Observations, however, were not consistent with this expectation: ARs 10988 and 10989 produced similar numbers of flares, and AR 10989 also produced a few CMEs. These results highlight present limitations of statistics-based flare and CME forecasting tools that rely upon line-of-sight photospheric magnetic data alone.  相似文献   

4.
J. Jakimiec  M. Tomczak 《Solar physics》2014,289(6):2073-2089
A large arcade flare, occurring on 2 March 1993, has been investigated using X-ray observations recorded by the Yohkoh and GOES satellites and the Compton Gamma Ray Observatory. We analyzed the quasi-periodicity of the hard-X-ray (HXR) pulses in the impulsive phase of the flare and found a close similarity between the quasi-periodic sequence of the pulses to that observed in another large arcade flare, that of 2 November 1991. This similarity helped to explain the strong HXR pulses which were recorded at the end of the impulsive phase as due to the inflow of dense plasma (coming from the chromospheric evaporation) into the acceleration volume inside the cusp. In HXR images a high flaring loop was seen with a triangular cusp structure at the top, where the electrons were efficiently accelerated. The sequence of HXR images allowed us to investigate complicated changes in the precipitation of the accelerated electrons toward the flare footpoints. We have shown that all these impulsive-phase observations can be easily explained in terms of the model of electron acceleration in oscillating magnetic traps located within the cusp structure. Some soft-X-ray (SXR) images were available for the late decay phase. They show a long arcade of SXR loops. Important information about the evolution of the flare during the slow decay phase is contained in the time variation of the temperature, T(t), and emission measure, EM(t). This information is the following: i) weak heating occurs during the slow decay phase and it slowly decreases; ii) the decrease in the heating determines a slow and smooth decrease in EM; iii) the coupling between the heating and the amount of the hot plasma makes the flare evolve along a sequence of quasi-steady states during the slow decay phase (QSS evolution).  相似文献   

5.
We carry out an analysis of the mass that is evacuated from three coronal dimming regions observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. The three events are unambiguously identified with white-light coronal mass ejections (CMEs) that are associated in turn with surface activity of diverse nature: an impulsive (M-class) flare, a weak (B-class) flare, and a filament eruption without a flare. The use of three AIA coronal passbands allows applying a differential emission measure technique to define the dimming regions and identify their evacuated mass through the analysis of the electronic density depletion associated with the eruptions. The temporal evolution of the mass loss from the three dimmings can be approximated by an exponential equation followed by a linear fit. We determine the mass of the associated CMEs from COR2 data. The results show that the evacuated masses from the low corona represent a considerable amount of the CME mass. We also find that plasma is still being evacuated from the low corona at the time when the CMEs reach the COR2 field of view. The temporal evolution of the angular width of the CMEs, of the dimming regions in the low corona, and of the flux registered by GOES in soft X-rays are all in close relation with the behavior of mass evacuation from the low corona. We discuss the implications of our findings toward a better understanding of the temporal evolution of several parameters associated with the analyzed dimmings and CMEs.  相似文献   

6.
We study an active region coronal jet that evolved from southward of a major sunspot of NOAA AR12178 on 04 October 2014. This jet is associated with an onset of the GOES C1.4 flare. We use SDO/AIA, SDO/HMI, GONG \(H\upalpha\) and GOES data for analysing the observed event. We term this jet as a two-stage confined eruption of the plasma. In the first stage, some plasma erupts above the compact flaring region. In the second stage, this eruptive jet plasma and associated magnetic field lines interact with another set of distinct magnetic field lines present in its south-east direction. This creates an X-point region, where the second stage of the jet eruption is deflected above it on a curvilinear path into overlying corona. The lower part of the jet is followed by a cool surge eruption, which is visible only in \(H{\upalpha}\) emissions. The magnetic flux cancellation at the footpoint causes the triggering of C-class flare eruption. This flare energy release further triggers first stage of the coronal jet eruption. The second stage of the jet eruption is a consequence of an interaction of two distinct sets of magnetic field lines in the overlying corona. The first stage of the coronal jet and co-spatial but lagging cool surge may have common origin due to the reconnection generated heating pulses. This complex evolution of the coronal jet involves flare heating induced first stage plasma eruption, guiding of jet’s material above a junction of two distinct sets of field lines in the corona, and intra-relationship with cool surge. In effect, it imposes rigid constraints on the existing jet models.  相似文献   

7.
New perspectives in solar diagnosis have been opened in recent years with the advent of high-resolution soft X-ray spectroscopy for plasmas forming at temperatures above 107 K. The spectra obtained with the soft X-ray spectrometers flown during the last solar maximum on the major space missions dedicated to flares have allowed detailed studies of the hydrodynamic response of coronal loops to impulsive energy deposition and of the formation of the high-temperature plasma as a consequence of such dynamic effects. These studies are possible since high-resolution spectrometers give an accurate measure of both line intensities and profiles in important spectral regions, covering the emission of highly ionized heavy ions, which allow a direct determination of most of the crucial plasma parameters in the flare region. In response to the impulsive energy release in the flare region, while the intensity of soft X-ray lines increases, line profiles show large non-thermal broadenings and strong blue-asymmetries.There have been important contributions in the understanding of the formation of the flare high-temperature plasma, as an effect of the hydrodynamic response of the solar atmosphere to impulsive chromospheric heating. On the other hand, the attempts to investigate the primary energy release and transport, on the basis of the soft X-ray spectral data, have not yet been entirely successful. Significant differences in the emitted spectra are expected at the very onset of flares for different energy deposition and transport processes, but the sensitivity of the present experiments is still insufficient to detect with good statistics the early stage of flares and, therefore, to allow a reliable discrimination. It is expected that future experiments with higher sensitivity will be of great importance for relating with less ambiguity the observed flare evolution in soft X-rays to the primary energy deposition in the flaring coronal loops.  相似文献   

8.
The spatial-distribution dynamics of the hot coronal plasma with T ~ 10 MK during a period of high solar activity is studied. We analyze images of the NOAA 9830 active region and its surroundings obtained during the second half of February 2002 with the SPIRIT spectroheliograph in the Mg XII 8.42-Å line and simultaneously on the SOHO satellite with the EIT instrument and on the TRACE satellite in the 195-Å channel. As shown by a multiwavelength analysis, a high-temperature plasma is concentrated in the corona near the apices of magnetic loops, it has long lifetimes (up to several days), and its dynamics is complex and bears no direct relation to flare activity. During the flares, conspicuous increases are observed in the X-ray flux and the emission measure for temperatures of ~5–15 MK. Our analyses of the time variations in emission during a flare suggest that hot plasma is heated by fluxes of accelerated electrons.  相似文献   

9.
Using TRACE EUV 171 Å line, Hα line, Zürich radio, RHESSI, and HXRS observations the 29 September 2002 flare (M2.6), which occurred in AR NOAA 0134, was analyzed. Flaring structures were compared with a potential magnetic field model (field lines and quasi-separatrix layers) made from SOHO/MDI full-disk magnetogram. Series of high-resolution SOHO/MDI magnetograms and TRACE white-light images were used to find changes in the active region at the photosphere during the flare. The flare began with a rising of a small dark loop followed by the flare brightening observed in 171 Å with TRACE and Hα lines. In radio wavelengths, first type III bursts were observed 5 min prior to the start of hard X-ray emission, indicating a pre-flare coronal activity. The main hard X-ray emission peak (at 06:36 UT) was associated with the second type III burst activity and several slowly negatively drifting features, all starting from one point on the radio spectrum (probably a shock propagating through structures with different plasma parameters). After this time a huge loop formed and three minutes later it became visible in absorption both in Hα and 171 Å EUV lines. The phase of huge dark loop formation was characterized by long-lasting, slowly negatively drifting pulsations and drifting continuum. Finally, considering this huge loop as a surge an evolution of the event under study is discussed.  相似文献   

10.
It is generally accepted that densities of quiet-Sun and active region plasma are sufficiently low to justify the optically thin approximation, and this is commonly used in the analysis of line emissions from plasma in the solar corona. However, the densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Furthermore, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk center. The model predictions are validated with an analysis of over 200 flares observed by the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO), which uses six lines, with peak formation temperatures between 8.9 and 15.8 MK, to show that limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line of sight typically increases by \(1.76 \times 10^{19}~\mbox{cm}^{-2}\) for limb flares over the disk-center flare value. It is shown that the CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and it changes the relative intensities of lines and bands commonly used for spectral analysis.  相似文献   

11.
The RESIK instrument on the CORONAS-F spacecraft obtained solar flare and active-region X-ray spectra in four channels covering the wavelength range 3.8?–?6.1 Å in its operational period between 2001 and 2003. Several highly ionized silicon lines were observed within the range of the long-wavelength channel (5.00?–?6.05 Å). The fluxes of the Si?xiv Ly-β line (5.217 Å) and the Si?xiii 1s 2?–?1s3p line (5.688 Å) during 21 flares with optimized pulse-height analyzer settings on RESIK have been analyzed to obtain the silicon abundance relative to hydrogen in flare plasmas. As in previous work, the emitting plasma for each spectrum is assumed to be characterized by a single temperature and emission measure given by the ratio of emission in the two channels of GOES. The silicon abundance is determined to be A(Si)=7.93±.21 (Si?xiv) and 7.89±.13 (Si?xiii) on a logarithmic scale with H=12. These values, which vary by only very small amounts from flare to flare and times within flares, are 2.6±1.3 and 2.4±0.7 times the photospheric abundance, and are about a factor of three higher than RESIK measurements during a period of very low activity. There is a suggestion that the Si/S abundance ratio increases from active regions to flares.  相似文献   

12.
Thirty active regions were observed on the Sun during the period from October 19 to November 20, 2003. Hard X-ray and gamma-ray radiation was detected from four active regions (10484, 10486, 10488, and 10490): 14 solar flares stronger than M5.0 according to the GOES classification were recorded during this period by detectors onboard the Geostationary Operational Environmental Satellite (GOES), Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and other satellites. Five of these flares (and also the M2.7 flare of October 27, 2003) were also observed by the AVS-F apparatus onboard the CORONAS-F satellite. This paper discusses the time profiles and energy spectra of the solar flares of October 26, 2003 (M7.6), and October 29, 2003 (X10), and of the initial phase of the flare of November 4, 2003 (X18), obtained by the AVS-F instrument during the passage of the satellite over the regions near the geomagnetic equator. The spectra of the M7.6 flare of October 26, 2003, and of the initial phase of the X18 flare of November 4, 2003, in the energy band from 0.1 to 17 MeV contain no lines, whereas the spectrum of the flare of October 29, 2003, exhibits nuclear lines and the 2.2-MeV line during the entire flare gamma-ray emission registration. We also report the time profiles of the flare of October 29, 2003, in the energy bands corresponding to the continuum in the energy band 0.3–0.6 MeV, the nuclear lines of 56Fe, 24Mg, 20Ne, 28Si, 12C, and 16O, and the 2.2-MeV neutron-capture line. The analysis of these temporal profile periodograms shows the presence of a thin structure with characteristic scales from 34 to 158 s at the 99% confidence level. The AVS-F apparatus analyzes temporal profiles of low-energy gamma-ray emission with a temporal resolution of 1 ms within the first 4.096 seconds of solar flares. The analysis of the data reveals no regularities in the time series on time scales ranging from 2 to 100 ms at a confidence level of 99% for these three solar flares.  相似文献   

13.
New observations of solar flare and active region X-ray spectra obtained with the Columbia University instrument on OSO-8 are presented and discussed. The high sensitivity of the graphite crystal panel has allowed both line and continuum spectra to be observed with moderate spectral resolution. Observations with higher spectral resolution have been made with a panel of pentaerythritol crystals. Twenty-nine lines between 1.5 and 7.0 Å have been resolved and identified, including several dielectronic recombination satellite lines to Si xiv and Si xiii lines which have been observed for the first time. It has been found that thermal continuum models specified by single values of temperature and emission measure have fitted the data adequately, there being good agreement with the values of these parameters derived from line intensity ratios.  相似文献   

14.
This paper describes the methods used to obtain the thermal evolution and radiative output during solar flares as observed by the Extreme ultraviolet Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO). How EVE measurements, due to the temporal cadence, spectral resolution and spectral range, can be used to determine how the thermal plasma radiates at various temperatures throughout the impulsive and gradual phase of flares is presented and discussed in detail. EVE can very accurately determine the radiative output of flares due to pre- and in-flight calibrations. Events are presented that show that the total radiated output of flares depends more on the flare duration than the typical GOES X-ray peak magnitude classification. With SDO observing every flare throughout its entire duration and over a large temperature range, new insights into flare heating and cooling as well as the radiative energy release in EUV wavelengths support existing research into understanding the evolution of solar flares.  相似文献   

15.
Concurrent observations of solar soft X-ray photometers aboard the US weather and space environment monitoring satellite GOES 6 and the USSR geophysical research satellite PROGNOZ 9 made it possible to compare physical parameters of flare plasmas obtained from both instruments as they observed the same solar events. Because of significant instrumental differences, a new method for comparing results had to be developed; this method is described.This paper addresses two related topics: (1) the intercomparison of two dissimilar X-ray photometers that cover approximately the same region of the X-ray spectrum, and (2) the analysis of flare plasma during the rise and decay phases, utilizing the dissimilar response characteristics of the X-ray sensors to discriminate the non-isothermal from isothermal epochs and to identify some of the main properties of those epochs.The intercomparison work considered the different spectral responses of the two photometers, but it was found that the residual differences in the respective X-ray fluxes were apparently due to a combination of environmental factors and uncertainties in the sensor calibrations. These sources of error affected the overall output of the photometers and the relative output of the two channels within each instrument. The effect of the error sources was largest at low flux levels and low temperatures; consequently the computed temperatures and emission measures were in relatively good agreement near X-ray maximum, particularly for those flares registering the highest temperatures.The analysis of flare plasma composition indicated that at the initial stage the plasma is strongly non-isothermal; it then thermalizes gradually, becoming mainly isothermal during the decay phase. A method for quantifying the distribution of the non-isothermal plasma is presented.  相似文献   

16.
Multi-channel CCD receivers are available for solar spectral research in the Astronomical Observatory of Shevchenko University of Kiev. The observational material considered here are 24 echelle spectrograms of the flare of July 15, 1981 and certain other disk and limb flares. Some temporal aspects of flare development are discussed, as well as properties of metal lines and the structure of the flare region. Disk and limb flare photometry indicate the full spatial coincidence of the emission volumes for all emission lines. No signs of altitude stratification for the lines of H and K Call, hydrogen, and other metals are detected. Metal flare emission is revealed in the cores of Fraunhofer lines, providing that a compact emission source is present in the active region and that broad wings of H and K CaII and hydrogen have formed. No broad wings are observed for metal lines. Two types of lower-intensity strips in the photospheric emission spectrum are detected; the first is the result of the lower temperature in sunspots, while the second is due to the weakening of photospheric radiation after it passes through the flare volume. No new spectral lines are observed in the spectrum of this second type of strip, which may be associated with a condensed layer of relatively cold plasma at the chromospheric level. Four components are always spatially coincident in the spectrum: (1) a compact source of higher intensity with broadened hydrogen and H and K Call line wings; (2) higher intensity in metal lines, but without broadened wings; (3) emission or absorption in helium lines; (4) a lower-intensity strip of photospheric emission due to its weakening after it passes through the flare volume.  相似文献   

17.
G. J. D. Petrie 《Solar physics》2013,287(1-2):415-440
The active region NOAA 11158 produced the first X-class flare of Solar Cycle 24, an X2.2 flare at 01:44 UT on 15 February 2011. The Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO) satellite produces 12-minute, 0.5′′ pixel?1 vector magnetograms. Here we analyze a series of these data covering a 12-hour interval centered at the time of this flare. We describe the spatial distributions of the photospheric magnetic changes associated with the flare, including the abrupt changes in the field vector, vertical electric current and Lorentz-force vector acting on the solar interior. We also describe these parameters’ temporal evolution. The abrupt magnetic changes were concentrated near the neutral line and in two neighboring sunspots. Near the neutral line, the field vectors became stronger and more horizontal during the flare and the shear increased. This was due to an increase in strength of the horizontal field components near the neutral line, most significant in the horizontal component parallel to the neutral line but the perpendicular component also increased in strength. The vertical component did not show a significant, permanent overall change at the neutral line. The increase in field strength at the neutral line was accompanied by a compensating decrease in field strength in the surrounding volume. In the two sunspots near the neutral line the integrated azimuthal field abruptly decreased during the flare but this change was permanent in only one of the spots. There was a large, abrupt, downward vertical Lorentz-force change acting on the solar interior during the flare, consistent with results of past analyses and recent theoretical work. The horizontal Lorentz force acted in opposite directions along each side of neutral line, with the two sunspots at each end subject to abrupt torsional forces relaxing their magnetic twist. These shearing forces were consistent with a contraction of field and decrease of shear near the neutral line, whereas the field itself became more sheared as a result of the field collapsing towards the neutral line from the surrounding volume. The Lorentz forces acting on the atmospheric volume above the photosphere were equal and opposite.  相似文献   

18.
We present temporal and spectral characteristics of X-ray flares observed from six late-type G–K active dwarfs (V368 Cep, XI Boo, IM Vir, V471 Tau, CC Eri and EP Eri) using data from observations with the XMM–Newton observatory. All the stars were found to be flaring frequently and altogether a total of 17 flares were detected above the 'quiescent' state X-ray emission which varied from 0.5 to  8.3 × 1029 erg s−1  . The largest flare was observed in a low-activity dwarf XI Boo with a decay time of 10 ks and ratio of peak flare luminosity to 'quiescent' state luminosity of 2. We have studied the spectral changes during the flares by using colour–colour diagram and by detailed spectral analysis during the temporal evolution of the flares. The exponential decay of the X-ray light curves, and time evolution of the plasma temperature and emission measure are similar to those observed in compact solar flares. We have derived the semiloop lengths of flares based on the hydrodynamic flare model. The size of the flaring loops is found to be less than the stellar radius. The hydrodynamic flare decay analysis indicates the presence of sustained heating during the decay of most flares.  相似文献   

19.
The EUV emission spectra in the wavelength range 110–1900 Å of the 5 September 1973 flare observed with the NRL slit spectrograph on Skylab are studied. The results are: (1) The chromospheric and transition-zone lines are greatly enhanced during the flare. In particular, the allowed lines are enhanced more than the intersystem lines. The Ni ii and P ii lines show the greatest enhancement with a factor of 800 increase in intensity. Other lines such as O i, C i, Si iii, S iii, S iv, O iv, O v, and N v show increases in intensity 10–100 times during the flare. (2) The chromospheric lines, although greatly enhanced during the flare, maintain their sharp and gaussian profiles and are not appreciably broadened. The transition zone lines, on the other hand, show a red-shifted component during the initial phase of the flare. The deduced downward velocity in the transition zone is 50 km s–1. In addition, there are large turbulent mass motions. The downward mass motion is probably caused by the pressure imbalance between the flare hot plasma at 13 × 106 K and the cooler plasma at 105 K. (3) The density of the 105 K flare plasma, as deduced from density-sensitive lines, is greater than 1012 cm-3. The depth of the 105 K plasma in the flare transition zone is only of the order of 0.1 km, giving a steep temperature gradient. Consideration of the energy balance between the conductive flux and the radiative energy losses shows that, indeed, the high density in the transition zone requires that its thickness be very small. This is a consequence of the maximum radiative efficiency at the temperature around 105 K in the solar plasma.Ball Brothers Research Corporation.  相似文献   

20.
We study the changes of the CaI λ6102.7 Å line profile and the magnetic field structure during the 1B/M2.2 while-light flare of August 12, 1981. The two brightest flare knots located in the penumbra of a sunspot with a δ configuration are investigated. The 1 ± V line profiles are analyzed. The reduction and analysis of our observations have yielded the following results. (1) The line profiles changed significantly during the flare, especially at the time of optical continuum emission observed near the flare maximum. In addition to the significant decrease in the depth, a narrow polarized emission whose Zeeman splitting corresponded to a longitudinal magnetic field strength of 3600 Gs was observed. This is much larger than the magnetic field strength in the underlying sunspot determined from the Zeeman splitting of absorption lines. (2) The largest changes of the CaI λ6102.7 Å line profile observed during the flare can lead to an underestimation of the longitudinal magnetic field strength measured with a video magnetograph by a factor of 4.5, but they cannot be responsible for the polarity reversal. (3) A sharp short-term displacement of the neutral line occurred at a time close to the flare maximum, which gave rise to a reversed-polarity magnetic field on a small area of the active region, i.e., a magnetic transient. This can be interpreted as a change in the inclination of the magnetic field lines to the line of sight during the flare. The short-term depolarization of the CaI λ6102.7 Å line emission observed at the other flare knot can also be the result of a change in the magnetic field structure. (4) These fast dynamic changes of the magnetic field lines occurred after the maximum of the impulsive flare phase and were close in time to the appearance of type II radio emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号