首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solar extreme ultraviolet (EUV) irradiance, the dominant global energy source for Earth's atmosphere above 100 km, is not known accurately enough for many studies of the upper atmosphere. During the absence of direct solar EUV irradiance measurements from satellites, the solar EUV irradiance is often estimated at the 30–50% uncertainty level using both proxies of the solar irradiance and earlier solar EUV irradiance measurements, primarily from the Air Force Geophysics Laboratory (now Phillips Laboratory) rockets and Atmospheric Explorer (AE) instruments. Our sounding rocket measurements during solar cycle 22 include solar EUV irradiances below 120 nm with 0.2 nm spectral resolution, far ultraviolet (FUV) airglow spectra below 160 nm, and solar soft X-ray (XUV) images at 17.5 nm. Compared to the earlier observations, these rocket experiments provide a more accurate absolute measurement of the solar EUV irradiance, because these instruments are calibrated at the National Institute of Standards and Technology (NIST) with a radiometric uncertainty of about 8%. These more accurate sounding-rocket measurements suggest revisions of the previous reference AE–E spectra by as much as a factor of 2 at some wavelengths. Our sounding-rocket flights during the past several years (1988–1994) also provide information about solar EUV variability during solar cycle 22.  相似文献   

2.
The solar irradiance data plays a very important role for understanding of Solar internal Structure and the solar terrestrial relationships. The Total Solar Irradiance (TSI) is integrated solar energy flux over the entire spectrum which arrives at the top of the atmosphere at the mean sun earth distance. TSI has been monitored from several satellites, e.g. Nimbus 7, Solar Maximum Mission (SMM), The NASA, Earth Radiation Budget Satellite (ERBS), NOAA9, NOAA10, Eureca and the Upper Atmospheric Research Satellite (UARS) etc. From these observations it reveals that the total solar irradiance varies about a small fraction of 0.1 over solar cycle being higher during maximum solar activity condition. In the present paper we have analysed the solar irradiance data from ERBS during the time period from October 15, 1984 to October 15, 2003. First filtering the data by Simple Exponential Smoothing we have applied the Rayleigh Power Spectrum Analysis on the processed data in order to search for its time variation. Study exhibits multi-periodicities on these data around 7, 11, 42, 80, 104, 130, 160, 254, 536, 752, 1142, 1388, 2474 and 4951 days with very high confidence levels (more than 95%). Apart from these strong periods there are some other weak periods around 22, 47, 53, 67, 69, 149, 167, 365, 489 and 683 days. These periods are significantly similar with the periods of other solar activities which may suggest that solar irradiance may be associated with other solar activities.  相似文献   

3.
运动学定轨是星载GPS特有的定轨方法,该方法不依赖于任何力学模型(地球重力场、大气阻力及太阳辐射压等),尤其适用于受大气阻力影响严重的低轨卫星定轨.基于双频星载GPS数据,研究了运动学定轨原理,讨论了数据预处理方法,建立了一套非差运动学定轨算法.并以GRACE (Gravity Recovery And Climate Experiment)-A、B卫星2008年2月实测数据作为试算验证了本研究方法的有效性和可靠性.GRACE 卫星实测数据计算结果表明:运动学定轨能达到5 cm精度(相对于SLR (Satellite Laser Ranging)),与动力学和简化动力学定轨精度相当.  相似文献   

4.
Gary Rottman 《Solar physics》2005,230(1-2):7-25
The Solar Radiation and Climate Experiment (SORCE) satellite carries four scientific instruments that measure the solar radiation at the top of the Earth's atmosphere. The mission is an important flight component of NASA's Earth Observing System (EOS), which in turn is the major observational and scientific element of the U.S. Global Change Research Program. The scientific objectives of SORCE are to make daily measurements of the total solar irradiance and of spectral solar irradiance from 120 to 2000 nm with additional measurements of the energetic X-rays. Solar radiation provides the dominant energy source for the Earth system and detailed understanding of its variation is essential for atmospheric and climate studies. SORCE was launched on January 25, 2003 and has an expected lifetime through the next solar minimum in about 2007. The spacecraft and all instruments have operated flawlessly during the first 2 years, and this paper provides an overview of the mission and discusses the contributions that SORCE is making to improve understanding of the Sun's influence on the Earth environment.  相似文献   

5.
太阳总辐照是指在地球大气层顶接收到的太阳总辐射照度,也叫"太阳常数",但它实际上并非常数。太阳总辐照随波长的分布即为太阳分光辐照。太阳辐照变化的研究,对理解太阳表面及内部活动的物理过程、机制,研究地球大气、日地关系,解决人类面临的全球气候变暖的挑战等,都具有重要意义。首先简单介绍了太阳辐照,回顾了太阳辐照的空间观测;接着介绍了观测数据的并合,以及对合成数据的一些研究;然后讨论了太阳辐照变化的原因,简述了太阳总辐照的重构及其在气候研究上的一些应用,并进行必要的评论;最后对未来的研究方向提出了一些看法。  相似文献   

6.
As a special approach to orbit determination for satellites with spaceborne GPS receivers, the kinematic Precise Orbit Determination (POD) is independent of any mechanical model (e.g., the Earth gravity ?eld, atmospheric drag, solar radiation pressure, etc.), and thus especially suitable for the orbit determination of Low Earth Orbiting (LEO)satellites perturbed strongly bythe atmosphere. In this paper, based on the space-borne dual-frequency GPS data, we study the kinematic POD, discuss the pre-processing of the data, and construct an algorithm of zero-difference kinematic POD. Using the observational data from GRACE (Gravity Recovery And Climate Experiment) satellites covering the whole month of February 2008, we verify the effectiveness and reliability of this algorithm. The results show that the kinematic POD may attain an accuracy of about 5 cm (with respect to satellite laser ranging data), which is at the same level as the dynamic and reduced-dynamic PODs  相似文献   

7.
The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth’s upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105?nm with unprecedented spectral resolution (0.1?nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazing-incidence spectrograph that measures the solar EUV irradiance in the 5 to 37?nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105?nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39?nm, and a MEGS-Photometer measures the Sun’s bright hydrogen emission at 121.6?nm. The EVE data products include a near real-time space-weather product (Level?0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15?minutes. The EVE higher-level products are Level?2 with the solar EUV irradiance at higher time cadence (0.25?seconds for photometers and ten seconds for spectrographs) and Level?3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth’s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.  相似文献   

8.
The Global Ozone Monitoring Experiment (GOME) is the first of a series of European satellite instruments monitoring global ozone and other relevant trace constituents in the UV/visible spectral range. On 20 April 1995, the European Space Agency (ESA) launched the GOME from Kourou, French Guyana, aboard the second European Remote Sensing satellite (ERS-2). In order to obtain the geometric albedo from the backscattered terrestrial radiance measurements, a solar irradiance measurement sequence in the spectral range between 240 nm and 790 nm is carried out once every day. The GOME solar irradiance is recorded at a moderate spectral resolution (0.2–0.4 nm), thus providing an excellent opportunity to contribute to the long-term investigation of solar flux variation associated with the 11-year solar activity cycle from space, which started in 1978 with SBUV (Solar Backscatter UV Experiment) observations on Nimbus-7 and covers solar cycles 21 and 22. This paper briefly describes the GOME spectrometer and measurement mode which are relevant to the solar viewing. Preliminary results from the solar irradiance measurements between 1995 and 1997 and comparisons to SSBUV-8 (Shuttle SBUV) in January 1996 are presented. Solar activity indices used as proxies for solar flux variation are often used to find a correlation with observed variation in atmospheric quantities, for instance, total ozone. Initial results from the GOME Mgii (280 nm) and Caii K (393 nm) solar activity index calculation are presented and discussed. The coupling of solar irradiance variability to global change is a current source of scientific and public concern. This study shows that GOME/ERS-2 (1995–2001) and the next generation of European remote sensing instruments, SCIAMACHY and GOME/METOP, have the potential to provide continuity in the measurements of solar irradiance from space well into the next century.  相似文献   

9.
GPS应用于地球动力学研究的进展   总被引:8,自引:0,他引:8  
介绍了GPS卫星系统的现代化以及IGS(International GPS Service)的最新研究成果;重点介绍了GPS技术在地球动力学研究中,包括国际地球参考架的建立与维护,固体地球形变和海平面变化的监测,科学卫星轨道的确定以及全球和中国地壳运动、地球定向参数的监测,GPS在大气研究和气象预报中的最新进展;评述了GPS技术目前存在的问题,包括与SLR测量之间存在的系统偏差、GPS技术本身可能存在的周年变化和GPS卫星天线相位中心的变化。  相似文献   

10.
The NASA Earth Observing System (EOS) is an advanced study of Earth's long-term global changes of solid Earth, its atmosphere, and oceans and includes a coordinated collection of satellites, data systems, and modeling. The EOS program was conceived in the 1980s as part of NASA's Earth System Enterprise (ESE). The Solar Radiation and Climate Experiment (SORCE) is one of about 20 missions planned for the EOS program, and the SORCE measurement objectives include the total solar irradiance (TSI) and solar spectral irradiance (SSI) that are two of the 24 key measurement parameters defined for the EOS program. The SORCE satellite was launched in January 2003, and its observations are improving the understanding and generating new inquiry regarding how and why solar variability occurs and how it affects Earth's energy balance, atmosphere, and long-term climate changes.  相似文献   

11.
The Solar Radiation and Climate Experiment, SORCE, is a satellite carrying four scientific instruments that measure the total solar irradiance and the spectral irradiance from the ultraviolet to the infrared. The instruments were all developed by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado, Boulder. The spacecraft carrying and accommodating the instruments was developed by Orbital Sciences Corporation in Dulles, Virginia. It is three-axis stabilized with a control system to point the instruments at the Sun, as well as the stars for calibration. SORCE was successfully launched from the Kennedy Space Center in Florida on 25 January 2003 aboard a Pegasus XL rocket. The anticipated lifetime is 5 years, with a goal of 6 years. SORCE is operated from the Mission Operations Center at LASP where all data are collected, processed, and distributed. This paper describes the SORCE spacecraft, integration and test, mission operations, and ground data system.  相似文献   

12.
The satellite-borne GPS receivers dedicated to precise orbit determination are now being carried by more and more low earth orbit (LEO) satellites and the satellite-borne GPS has become one of the main means for the precise orbit determination of low earth orbit satellites. The accuracy of satellite-borne GPS precise orbit determination depends on the accuracies of the GPS ephemeris and the clock error. Based on the orbit determination function of SHORDEIII zero-difference dynamics and using the observational data obtained by the GRACE satellites for the week from 2005 August 1 to 7 as an example, three versions of GPS ephemerides (igs, igr and igu) are used to carry out orbit determination under the same conditions and to estimate the effect of the GPS ephemeris accuracy on the accuracy of orbit determination of low earth orbit satellites. Our calculated results show that the two ephemerides, igs and igr, are equivalent to each other in orbit determination accuracy (about 9.5 cm), while igu is slightly less accurate, at about 10.5 cm. The effect produced by the data of the high frequency GPS satellite clock error on the accuracy of orbit determination is 1–6 cm.  相似文献   

13.
A New Ionosphere Monitoring Technology Based on GPS   总被引:1,自引:0,他引:1  
Although global positioning system (GPS) was originally planned as a satellite-based radio-navigation system for military purposes, civilian users have significantly increased their access to the system for both, commercial and scientific applications. Almost 400 permanent GPS tracking stations have been stablished around the globe with the main purpose of supporting scientific research. In addition, several GPS receivers on board of low Earth orbit satellites fitted with special antennas that focus on Earth's horizon, are tracking the radio signals broadcasted by the high-orbiting GPS satellites, as they rise and set on Earth horizon. The data of these ground and space-born GPS receivers, readily accessible through Internet in a ‘virtual observatory’ managed by the International GPS Service, are extensively used for many researches and might possibly ignite a revolution in Earth remote sensing. By measuring the changes in the time it takes for the GPS signals to arrive at the receiver as they travel through Earth's atmosphere, scientists can derive a surprising amount of information about the Earth's ionosphere, a turbulent shroud of charged particles that, when stimulated by solar flares, can disrupt communications around the world. This contribution presents a methodology to obtain high temporal resolution images of the ionospheric electron content that lead to two-dimensional vertical total electron content maps and three-dimensional electron density distribution. Some exemplifying results are shown at the end of the paper.  相似文献   

14.
The PICARD microsatellite mission will provide 2 to 6 years simultaneous measurements of the solar diameter, differential rotation and solar constant to investigate the nature of their relations and variabilities. The 100 kg satellite has a 40 kg payload consisting of 3 instruments which will provide an absolute measure (better than 10 milliarcsec) of the diameter and the solar shape, a measure of total solar irradiance, and UV and visible flux in selected wavelength bands. Now in Phase B, PICARD is expected to be launched before mid-2003. The engineering model of the diameter telescope will be used on ground simultaneously with the satellite to investigate the atmospheric bias and state on the possible accuracy of the ground measurements carried up to now. We review the scientific goals linked to the diameter measurement, present the payload, and give a brief overview of the program aspects.  相似文献   

15.
Solar soft X-ray (XUV) radiation is highly variable on all time scales and strongly affects Earth’s ionosphere and upper atmosphere; consequently, the solar XUV irradiance is important for atmospheric studies and for space weather applications. Although there have been several recent measurements of the solar XUV irradiance, detailed understanding of the solar XUV irradiance, especially its variability during flares, has been hampered by the broad bands measured in the XUV range. In particular, the simple conversion of the XUV photometer signal into irradiance, in which a static solar spectrum is assumed, overestimates the flare variations by more than a factor of two as compared to the atmospheric response to the flares. To address this deficiency in the simple conversion, an improved algorithm using CHIANTI spectral models has been developed to process the XUV Photometer System (XPS) measurements with its broadband photometers. Model spectra representative of quiet Sun, active region, and flares are combined to match the signals from the XPS and produce spectra from 0.1 to 40 nm in 0.1-nm intervals for the XPS Level 4 data product. The two XPS instruments are aboard NASA’s Solar Radiation and Climate Experiment (SORCE) and Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) satellites. In addition, the XPS responsivities have been updated for the latest XPS data processing version. The new XPS results are consistent with daily variations from the previous simple conversion technique used for XPS and are also consistent with spectral measurements made at wavelengths longer than 27 nm. Most importantly, the XPS flare variations are reduced by factors of 2 – 4 at wavelengths shorter than 14 nm and are more consistent, for the first time, with atmospheric response to solar flares. Along with the details of the new XPS algorithm, several comparisons to dayglow and photoelectron measurements and model results are also presented to help verify the accuracy of the new XUV irradiance spectra.  相似文献   

16.
For more than a decade total solar irradiance has been monitored simultaneously from space by different satellites. The detection of total solar irradiance variations by satellite-based experiments during the past decade and a half has stimulated modeling efforts to help identify their causes and to provide estimates of irradiance data, using proxy indicators of solar activity, for time intervals when no satellite observations exist. In this paper total solar irradiance observed by the Nimbus-7/ERB, SMM/ACRIM I, and UARS/ACRIM II radiometers is modeled with the Photometric Sunspot Index and the Mg II core-to-wing ratio. Since the formation of the Mg II line is very similar to that of the Ca II K line, the Mg core-to-wing ratio, derived from the irradiance observations of the Nimbus-7 and NOAA9 satellites, is used as a proxy for the bright magnetic elements. It is shown that the observed changes in total solar irradiance are underestimated by the proxy models at the time of maximum and during the beginning of the declining portion of solar cycle 22 similar to behavior just before the maximum of solar cycle 21. This disagreement between total irradiance observations and their model estimates is indicative of the fact that the underlying physical mechanism of the changes observed in the solar radiative output is not well-understood. Furthermore, the uncertainties in the proxy data used for irradiance modeling and the resulting limitation of the models should be taken into account, especially when the irradiance models are used for climatic studies.  相似文献   

17.
The paper presents a brief review of the instruments developed for measurement of ionizing extreme UV solar radiation at wavelengths of less than 130 nm onboard the CORONAS-I and CORONAS-F satellites and summarizes the observation data. The main goal of the study was to obtain information concerning variations of fluxes of solar radiation and solar flares at various wavelengths in the extreme ultraviolet. SUFR radiometers based on the thermoluminescent method were mounted onboard both CORONAS satellites (CORONAS-I and CORONAS-F). They performed measurements at λ < 130 nm. Spectral measurements in the 30.4-nm line were made by the photoelectronic spectrometer VUSS tested on CORONAS-I. Spectral measurements in the waveband including the H Lα line (121.6 nm) were conducted by the VUSS-L instrument (a Lyman alpha spectrophotometer) onboard the CORONAS-F satellite. The basic characteristics of the instruments, which were supposed to be used in a system of space weather monitoring on patrol satellites of the hydrometeorological service of Russia, are presented. The main data on the solar radiation flux at λ < 130 nm for minimum and maximum solar activity are given for quiet conditions and during solar flares.  相似文献   

18.
中国地球自转和地壳运动监测的研究工作   总被引:4,自引:0,他引:4  
主要介绍了1995年至1998年期间有关中国地球自转和地壳运动监测的研究工作及取 得的进展。  相似文献   

19.
针对国内气象部门的要求,本文就某一特定地域对地球低轨道卫星进行轨道计算,使得地面测点能维持在该区域较长时间.计算结果表明该轨道可以使得无线电掩星的地面测点维持在辐射半径为100km之内的区域达130天左右。这基本满足了利用GPS无线电掩星技术对局部地域大气进行监测研究的要求。  相似文献   

20.
GPS定轨中的太阳辐射压模型   总被引:5,自引:0,他引:5  
陈俊平  王解先 《天文学报》2006,47(3):310-319
对于GPS这样的高轨卫星轨道的确定,最大的误差源为太阳辐射压摄动.近年来IGS各个数据处理中心提供的GPS星历精度越来越高,其中很重要的一个因素就是太阳辐射压摄动模型的不断完善.详细阐述了目前主要的7种太阳辐射压摄动模型后,给出了各种光压摄动模型的计算模型,并利用不同的摄动模型积分卫星轨道,得到不同模型在GPS卫星轨道积分中的精度.结果表明,Bern大学提供的3种模型对太阳辐射压的模拟较为准确,相对于其他4种模型,由其得到的GPS轨道精度有将近一个量级的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号