首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Main results of computations of evolution for massive close binaries (10M +9.4M , 16M +15M , 32M +30M , 64M +60M ) up to oxygen exhaustion in the core are described. Mass exchange starting in core hydrogen, shell hydrogen and core helium burning stages was studied. Computations were performed assuming both the Ledoux and Schwarzschild stability criteria for semiconvection. The influence of UFI-neutrino emission on evolution of close binaries was investigated. The results obtained allow to outline the following evolutionary chain: two detached Main-Sequence stars — mass exchange — Wolf-Rayet star or blue supergiant plus main sequence star — explosion of the initially more massive star appearing as a supernova event — collapsed or neutron star plus Main-Sequence star, that may be observed as a runaway star — mass exchange leading to X-rays emission — collapsed or neutron star plus WR-star or blue supergiant — second explosion of supernova that preferentially disrupts the system and gives birth to two single high spatial velocity pulsars.Numerical estimates concerning the number and properties of WR-stars, pulsars and X-ray sources are presented. The results are in favour of the existence of UFI-neutrino and of the Ledoux criterion for describing semiconvection. Properties of several well-known X-ray sources and the binary pulsar are discussed on base of evolutionary chain of close binaries.  相似文献   

2.
On the basis of data on planetary nebula (PN) central star temperatures obtained by measurements in the ultraviolet (UV) range, the empirical calibration dependence between the number of Lyman photons emitted by a central starS and PN diameterD, is constructed. The temperatures of 118 PN central stars are estimated with this dependence. It is shown that the central star masses are distributed in a wide interval from 0.5 to 1.2M . About 60% of all stars have masses <0.6M , about 25% have masses >0.6M and the remainder have masses 0.6M . The averaged empirical tracks of evolution of low-mass (<0.6M ) and massive (>0.6M ) central stars differing considerably from each other are constructed. It is shown that the majority of central stars may possess hot chromospheres (T>2×105 K) which spread for several tens of radii of the central star. The PN originates as a result of ionization of the matter ejected by a red giant at the superwind stage. The cause for this ionization is the UV radiation of the PN central star.  相似文献   

3.
It is suggested that the minimum mass of a star at the time of its formation is approximately 0.01M . Making use of this fact and the stellar mass functionF(M) M , it is found that the hidden mass (or the missing mass) in the solar neighborhood may be explained by the presence of a large number of invisible stars of very low mass (0.01M M<0.07M ).  相似文献   

4.
Observations of very massive stars (M10M ) are suggestive of a star formation process which requires an external trigger. However, observations pertaining to the formation of stars of lower mass (M9M ) require no such triggering mechanism and are consistent with the idea that such stars form as a natural consequence of the evolution, gravitational collapse and fragmentation of a proto-stellar molecular cloud.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

5.
The stationary two-dimensional magnetohydrodynamic solution for the accretion of the matter without pressure into a gravitating centre of a black hole is obtained. It is assumed that the magnetic field far from the collapsed star is homogeneous and its influence on the flow is negligible. Around the star, at the plane perpendicular to the direction of the magnetic field, the dense quasistationary disc is formed, the structure of which in a large extent is determined by dissipation processes. The structure is calculated for (a) a laminar disc with the Coulomb mechanism of dissipation; and (b) a turbulent disc.The estimations of the parameters of the shock which result from the infall of the matter onto the disc are given. In the last section the numerical estimation and approximate character of the radiation spectrum of the disc and the shock are obtained for two cases of 10M and 105 M . The luminosity of collapsed objects withM=10M appears to be about solar, thus its observation is possibly only at the distances less than 300–1000 pc. The collapsed objects in the Galaxy withM=105 M could constitute very bright sources in spectral regions from optical up to X-ray. The spectra of a laminar and a turbulent disc for 10M black hole are very different. The laminar disc radiates primarily in the ultraviolet. The turbulent disc radiates a large part of its flux in the infrared. Therefore, one cannot exclude the possibility that some of the galactic infrared star-like sources are individual black holes in the accretion state.  相似文献   

6.
Hydrogen-rich stars of very low mass (M 0.08M ) never go through hydrogenburning thermonuclear reactions and, in a time scale much shorter than the age of the Galaxy, become completely degenerate objects or black dwarfs. The number of the very-low-mass (VLM) black dwarfs is expected to be very large and they are likely to make a significant contribution to the total mass of the Galaxy. Processes of star and planet formation are discussed and it is concluded that the luminous and dark objects of mass 0.001M -0.08M beyond the solar system are not likely to be planets. Formation of Jupiter is discussed and it is suggested that the mass of Jupiter at the time of formation was smaller than its present mass.Paper presented at the Conference on Planetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

7.
The Main-Sequence positions as well as the evolutionary behavior of Population III stars up to an evolution age of 2×1010 yr, taking this time as the age of the Universe, have been investigated in the mass range 0.2 and 0.8M . While Population III stars with masses greater than 0.3M develop a radiative core during the approach to the Main Sequence, stars with masses smaller than 0.3M reach the Main Sequence as a wholly convective stars. Population III stars with masses greater than 0.5M show a brightening of at most 2.2 in bolometric magnitude when the evolution is terminated as compared to the value which corresponds to zero-age Main Sequence. The positions of stars with masses smaller than 0.5M remain almost the same in the H-R diagram.If Population III stars have formed over a range of redshifts, 6相似文献   

8.
In this paper we calculate the number of close binaries formed during the evolution process of a globular cluster core. The globular cluster core is assumed to contain a massive black hole at its center. We show that the central black hole can drive binaries formation in the core and the rate of binaries formation depends on the mass of the black hole at its center. When the massM of the black hole is between 102 M and 3×103 M , there will be a few binaries formed. When the mass of the black hole is 4×103 M M6×103 M , the number of binary star formation will suddenly increase with a jump to the maximum value 58. When the mass of the black hole is 7×103 M M9×103 M , the number of binary star will immediately decrease. Whether cluster X-ray is produced mainly by the central black hole or by binaries in the core depends on the mass of the central black hole. Therefore, two cases arise: namely, black hole accretion domination and binaries radiation domination. We do think that we cannot exclude the possibility of the existence of a central black hole even when binary radiation characteristics have been observed in globular cluster X-ray sources.  相似文献   

9.
The young cluster NGC 654 is studied using UBV photographic photometry with a view to determining the distribution of interstellar matter in a region where star formation recently occurred.NGC 654 is found to be enclosed in a shell of interstellar matter of mass 1500M . The mass of all stars in the cluster is 4000M .  相似文献   

10.
An equation of state is considered that, in superdense nuclear matter, results in a phase transition of the first kind from the nucleon state to the quark state with a transition parameter > 3/2 ( = Q /( N + P 0/c 2)). A calculation of the integrated parameters of superdense stars on the basis of this equation of state shows that on the stable branch of the dependence of stellar mass on central pressure (dM/dP c > 0), in the low-mass range, following the formation of a tooth-shaped break (M = 0.08 M , R = 200 km) due to quark formation, a new local maximum with M max = 0.082 M and R = 1251 km is also formed. The mass and radius of the quark core of such a star turn out to be M core = 0.005 M and R core = 1.7 km, respectively. Mass accretion in this model can result in two successive transitions to a neutron star with a quark core, with energy release like supernova outbursts.  相似文献   

11.
The evolution of a binary system with components of 10M and 8M is computed through a case B of mass exchange. It is found that after the end of core helium burning, a second stage of mass transfer from the primary occurs. Carbon ignition is prohibited by the large neutrino losses in the degenerated core. The primary remnant, a 1.12M star, ends as a white dwarf. A comparison with the 10M single evolution is made.This research is supported by the National Foundation of Collective Fundamental Research of Belgium (F.K.F.O.) under No. 10303.  相似文献   

12.
It has been shown that the mass of neutron stars obtained from equations of state based on nuclear theory depend upon the number of baryons assembled in it but not on the type of interactions considered. On examining the behaviour of different equations of state based on nuclear theories, a simple polytropic equation of state,P = (K/N)(pp s)N is proposed. The results obtained forN=1.75 cover the entire range of neutron star masses obtained from the equations of state based on nuclear theories and give a maximum mass of 2.8M . Depending upon various mechanisms for energy output the mass of Crab pulsar is estimated to range from 0.32M to 1.5M . The relation connecting the coordinate mass,M, and the rest mass,M 0, may be written asM/M 0.93 (M 0/M)0.9.  相似文献   

13.
Mass functions for samples of white dwarf stars and for a largeheterogeneous sample of nearby stars appear to have unexplained deficitsin the 0.70 M to 0.75 M range. The existence, ornon-existence, of this anomaly constitutes a definitive test of afractal cosmological model that inherently predicts a gap in stellarmass functions at 0.73 M .  相似文献   

14.
We have studied the thermonuclear runaways which develop on white dwarfs of 1.205M and 1.358M accreting hydrogen rich material at 10–10 M yr–1. It is found that ignition of this material occurs at densities in excess of about 104 gm cm–3 and that the critical accumulated mass required to initiate the runaway is 0.7(1.5)×10–4 M for a 1.358(1.205)M white dwarf.  相似文献   

15.
Evolutionary tracks up to the point of dynamical instability are obtained for isentropic objects with rest masses ranging from 102 M to 107 M . Accurate values for the red shift, specific entropy, luminosity and effective temperature at the onset of collapse are given.  相似文献   

16.
The contribution to the galactic abundance of He and heavy elements by stellar nucleosynthesis is calculated as a function of time, keeping account of present knowledge about stellar and galactic evolution. A model is used which distinguishes the phase of the contracting halo from the subsequent history of the disc. Various uncertainties involved both in stellar and in galactic evolutionary theory are discussed. The amount of4He produced by stars of different masses and ejected in interstellar medium is fairly well known from stellar theory, while we have assumed its primordial abundance as a free parameter, ranging from 0 up to 0.4. We find that stellar activity provides a significant contribution to the cosmic4He, though not sufficient to explain the observed abundance. The best agreement with observational data (Y 0.26 andY now0.28) is obtained starting with a primordial abundanceY =(0.20–0.23), which is consisten with the Big-Bang theory predictions and with recent observational estimates. The contribution to the abundance of heavy elements depends on the last stellar stages and on the final explosion mechanism, which are only now beginning to be understood. Nevertheless, in the framework of present theories, we individuate a stellar evolutionary scheme reproducing the observedZ abundances for Populationi and Populationii stars, with the correctly estimated Y/Z value. In this scheme, only stars belonging to two narrow mass ranges (10m/m 15 andm/m 80) are allowed to eject metal-enriched matter, possibly with the solar (C+O)/(Si+Fe) ratio.  相似文献   

17.
UBV light curves and spectrograms of R CMa obtained with the 48-inch telescope of Japal-Rangapur Observatory during 1980–82 have been used for deriving the eclipse and orbital elements as well as the absolute dimensions of the components. The primary is found to be a Main-Sequence F2V star of mass 1.52M and the secondary a subgiant star of spectral type G8 and mass 0.20M which fills its Roche lobe, in agreement with Kopal and Shapley (1956) results, Kopal (1959), or Sahade's (1963) results. From a consideration of the possible evolution of this system it is concluded that a large fraction of the original mass of the secondary is lost from the system. A study of the period changes indicates the possible presence of a third component of mass of about 0.5M which is most likely to be anM dwarf.Paper presented at the Lembang-Bamberg IAU Colloquium No. 80 on Double Stars: Physical Properties and Generic Relations, held at Bandung, Indonesia, 3–7 June, 1983.  相似文献   

18.
It has been recently established that there exists a maximal red shiftz max for a homogeneous star of given massM. The relationshipz max(M) is obtained for neutron stars in the mass range 0.71M/M 12.06.  相似文献   

19.
The relationships among the various physical parameters-namely, the effective temperatures, radii and bolometric magnitudes, determined on the basis of the energy distribution curves of 25 Am stars — have been studied. Their effective temperatures are in the range of 7200 K to 9700 K; the radii, 1.5R to 2.5R ; the bolometric magnitudes, 0.75 mag. to 2.25 mag.; and the masses, 1.5M to 2.25M . The Am stars in general, appear redder than their normal counterparts, the blanketing in the blue andUV regions being the major cause. For the relatively cooler stars, the (B-V) colours are found to be less affected by blanketing. They are located in the neighbourhood of the upper edge of the zero-age Main Sequence band and show a fairly wide range in the evolutionary status among themselves. The bolometric corrections which are independent of the uncertainties in the parallax measurements, follow the same trend as that of the Ap stars, with reference to the temperature.  相似文献   

20.
Time resolved spectroscopy of the dwarf nova IP Pegasi in the range 7670–8320Å shows absorption lines originating from the cool secondary. A radial velocity curve for this component has been derived by cross-correlation with a normal M star. The curve has semi-amplitude K2=288.3±4 km s–1, and is slightly distorted. This distortion is equivalent to an orbit with an apparent eccentricity of 0.075±0.024. The mass function of the primary is 0.394±0.016M. From this we derive constraints on the component masses of 0.621<1.14M and 0.172<0.71M. The red star has a radius in the range 0.322<0.51R and is probably on the main sequence.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号