首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The steep flanks of composite volcanoes are prone to collapse, producing debris avalanches that completely reshape the landscape. This study describes new insights into the runout of large debris avalanches enhanced by topography, using the example of six debris avalanche deposits from Mount Ruapehu, New Zealand. Individual large flank collapses (>1 km3) produced all of these units, with four not previously recognised. Five major valleys within the highly dissected landscape surrounding Mount Ruapehu channelled the debris avalanches into deep gorges (≥15 m) and resulted in extremely long debris avalanche runouts of up to 80 km from source. Classical sedimentary features of debris avalanche deposits preserved in these units include the following: very poor sorting with a clay-sand matrix hosting large subrounded boulders up to 5 m in diameter, jigsaw-fractured clasts, deformed clasts and numerous rip-up clasts of late-Pliocene marine sediments. The unusually long runouts led to unique features in distal deposits, including a pervasive and consolidated interclast matrix, and common rip-up clasts of Tertiary mudstone, as well as fluvial gravels and boulders. The great travel distances can be explained by the debris avalanches entering deep confined channels (≥15 m), where friction was minimised by a reduced basal contact area along with loading of water-saturated substrates which formed a basal lubrication zone for the overlying flowing mass. Extremely long-runout debris avalanches are most likely to occur in settings where initially partly saturated collapsing masses move down deep valleys and become thoroughly liquified at their base. This happens when pore water is available within the base of the flowing mass or in the sediments immediately below it. Based on their H/L ratio, confined volcanic debris avalanches are two to three times longer than unconfined, spreading flows of similar volume. The hybrid qualities of the deposits, which have some similarities to those of debris flows, are important to recognise when evaluating mass flow hazards at stratovolcanoes.  相似文献   

3.
Where snow avalanches descend steeply into large rivers, displacing bedload, avalanche boulder-ramparts may accumulate, retaining a record of late-Holocene snow-avalanche frequency. The age frequency of surface boulders on 12 such features in upper Jostedalen, southern Norway, was investigated using the size-frequency distribution of lichens. A model was constructed to simulate the influence of variations in avalanche frequency since AD 1325 on lichen-size-frequency distributions. Using this modelling approach it is not possible to define a unique pattern of avalanche activity to account for the observed lichen-size-frequency distributions, but it is possible to place strict limits on the range of scenarios that are acceptable. The results suggest that maximum avalanche activity occurred during the 19th century, after the peak of the Little Ice Age. This conflicts with historical records of avalanche damage to property at lower altitude in nearby valleys, which may reflect avalanche activity only during a short period of extreme climatic conditions. Close agreement between the records of snow avalanches and debris flows suggests that both reflect periods of high winter snowfall and rapid spring melting rather than low temperature. Future ‘greenhouse warming’ may therefore result in increased avalanche activity in southern Norway.  相似文献   

4.
Snow avalanches are a widespread natural phenomenon in steep mountain environments, where they modulate landscapes and frequently disturb forest stands. Such disturbances in trees have been used since the 1970s to retrospectively date avalanches, study their extent and reach, as well as to document their triggers. Although virtually every dendrogeomorphic paper is still based on the concepts established by Shroder (1978), important methodological improvements have been achieved in the field ever since and more particularly over the last decade. This study therefore reports on recent methodological progress and employs three different approaches (i.e. Shroder index value and Kogelnig-Mayer weighted index value) and different sets of signals in trees (i.e. inclusion of tangential rows of traumatic resin ducts as evidence of past avalanching) to record snow avalanche activity. Using 238 increment cores from 105 Picea abies (L.) Karst trees which colonize a snow avalanche path in the Romanian Carpathians, we illustrate possibilities and limitations of the different approaches for the period covered by the chronologies (1852–2013). In addition, we sampled 30 undisturbed P. abies trees from a forest stand north of the avalanche path, where no geomorphic disturbance was identified, so as to build a reference tree-ring chronology. The three avalanche chronologies constructed with the disturbed trees allow identification of past process activity, but results differ quite considerably in terms of avalanche frequency, number of reconstructed events and their temporal distribution. Depending on the approach used, 15 to 20 snow avalanches can be reconstructed, with the best results being obtained in the dataset including tangential rows of traumatic resin ducts. The addition of this anatomical feature, formed after mechanical impact enlarges the number of growth disturbances by 43.5%, and can thus explain the increase of reconstructed avalanches by one-third as compared to the results of the chronology using the “conventional” Shroder approach.  相似文献   

5.
6.
In this paper, we considered dense avalanches made of dry and cohesion-less snow as gravitational granular flows. We used an effective friction law derived from the recent progress on granular behaviour research to represent momentum loss. We formulated a simple erosion and deposition model where the eroded and deposited mass fluxes are estimated from the knowledge of the starting and stopping conditions on a given slope angle. We adopted the shallow water hypothesis and introduced the new formulation of erosion and deposition processes. We solved the equations thanks to an accurate finite volumes solver scheme, using a non-structured mesh. This allows an easy integration of defence structures and singularities. Each component of this model was tested using analytical solutions and experimental laboratory data. Finally, we used the February 1999 Taconnaz avalanche event to test this model on a real snow avalanche case. These tests gave promising results.  相似文献   

7.
Pyroclastic flows from the 1991 eruption of Unzen volcano,Japan   总被引:1,自引:0,他引:1  
Pyroclastic flows from Unzen were generated by gravitational collapse of the growing lava dome. As soon as the parental lobe failed at the edge of the dome, spontaneous shattering of lava occurred and induced a gravity flow of blocks and finer debris. The flows had a overhanging, tongue-like head and cone- or rollershaped vortices expanding outward and upward. Most of the flows traveled from 1 to 3 km, but some flows reached more than 4 km, burning houses and killing people in the evacuated zone of Kita-kamikoba on the eastern foot of the volcano. The velocities of the flows ranged from 15 to 25 m/s on the gentle middle flank. Observations of the flows and their deposits suggest that they consisted of a dense basal avalanche and an overlying turbulent ash cloud. The basal avalanche swept down a topographic low and formed to tongue-like lobe having well-defined levees; it is presumed to have moved as a non-Newtonian fluid. The measured velocities and runout distances of the flows can be matched to a Bingham model for the basal avalanche by the addition of turbulent resistance. The rheologic model parameters for the 29 May flow are as follows: the density is 1300 kg/m3, the yield strength is 850 Pa, the viscosity is 90 Pa s, and the thickness of the avalanche is 2 m. The ash cloud is interpreted as a turbulent mixing layer above the basal avalanche. The buoyant portions of the cloud produced ash-fall deposits, whereas the dense portions moved as a surge separated from the parental avalanche. The ash-cloud surges formed a wide devastated zone covered by very thin debris. The initial velocities of the 3 June surges, when they detached from avalanches, are determined by the runout distance and the angle of the energy-line slope. A comparison between the estimated velocities of the 3 June avalanches and the surges indicates that the surges that extended steep slopes along the avalanche path, detached directly from the turbulent heads of the avalanches. The over-running surge that reached Kita-Kamikoba had an estimated velocity higher than that of the avalanche; this farther-travelled surge is presumed to have been generated by collapse of a rising ash-cloud plume.  相似文献   

8.
The initial explosions at Mount St. Helens, Washington, on the moring of 18 May 1980 developed into a huge pyroclastic surge that generated catastrophic floods off the east and west flanks of the volcano. Near-source surge deposits on the east and west were lithic, sorted, lacking in accretionary lapilli and vesiculated ash, not plastered against upright obstacles, and hot enough to char wood — all attributes of dry pyroclastic surge. Material deposited at the surge base on steep slopes near the volcano transformed into high-concentration lithic pyroclastic flows whose deposits contain charred wood and other features indicating that these flows were hot and dry. Stratigraphy shows that even the tail of the surge had passed the east and west volcano flanks before the geomorphically distinct floods (lahars) arrived. This field evidence undermines hypotheses that the turbulent surge was itself wet and that its heavy components segregated out to transform directly into lahars. Nor is there evidence that meters-thick snow-slab avalanches intimately mixed with the surge to form the floods. The floods must have instead originated by swift snowmelt at the base of a hot and relatively dry turbulent surge. Impacting hot pyroclasts probably transferred downslope momentum to the snow surface and churned snow grains into the surge base. Melting snow and accumulating hot surge debris may have moved initially as thousands of small thin slushflows. As these flows removed the surface snow and pyroclasts, newly uncovered snow was partly melted by the turbulent surge base; this and accumulating hot surge debris in turn began flowing, a self-sustaining process feeding the initial flows. The flows thus grew swiftly over tens of seconds and united downslope into great slushy ejecta-laden sheetfloods. Gravity accelerated the floods to more than 100 km/h as they swept down and off the volcano flanks while the snow component melted to form great debris-rich floods (lahars) channeled into valleys.  相似文献   

9.
The purpose of dendrogeomorphic analyses is to amplify the signal related to the geomorphic process under investigation, and to minimize the noise induced by other signals in the tree-ring series. Yet, to date, no study accounts specifically for interferences induced by climate conditions or exogenous disturbances and which can, potentially, affect the quality of tree-ring based process reconstructions. In this paper, we develop a specific procedure allowing evaluation of the quality of reconstructions in five avalanche paths at Oberwald (Swiss Alps). The study is based on possible interferences between snow avalanches, climatic conditions and ecological signals in the tree-ring series. Analysis of past events was based on tree-ring series from 564 heavily affected, multi-centennial European larch trees (Larix decidua Mill.) growing near or next to the avalanche paths. A total of 2389 growth disturbances, such as scars, tangential rows of traumatic resin ducts, compression wood as well as abrupt growth suppressions or releases, were identified in the samples, indicating 43 destructive snow avalanches since AD 1780. At the same time, 31 potential events, which were detected with the conventional Shroder index value, were rejected from the final reconstruction due to potentially strong interferences between the different signals. This high rejection rate underlines the necessity to systematically–and carefully–discriminate ecological and climatic noise from avalanche-related disturbances. This discrimination is even more so crucial as a significant proportion of dendrogeomorphic studies in the Alps are based on L. decidua trees which are cyclically affected by larch budmoth outbreaks.  相似文献   

10.
For snow avalanches, passive defense structures are generally designed by considering high return period events. However, defining a return period turns out to be tricky as soon as different variables are simultaneously considered. This problem can be overcome by maximizing the expected economic benefit of the defense structure, but purely stochastic approaches are not possible for paths with a complex geometry in the runout zone. Therefore, in this paper, we include a multivariate numerical avalanche propagation model within a Bayesian decisional framework. The influence of a vertical dam on an avalanche flow is quantified in terms of local energy dissipation with a simple semi-empirical relation. Costs corresponding to dam construction and the damage to a building situated in the runout zone are roughly evaluated for each dam height–hazard value pair, with damage intensity depending on avalanche velocity. Special attention is given to the poor local information to be taken into account for the decision. Using a case study from the French avalanche database, the Bayesian optimal dam height is shown to be more pessimistic than the classical optimal height because of the increasing effect of parameter uncertainty. It also appears that the lack of local information is especially critical for a building exposed to the most extreme events only. The residual hazard after dam construction is analyzed and the sensitivity to the different modelling assumptions is evaluated. Finally, possible further developments of the approach are discussed.  相似文献   

11.
Lichens of the subspecies Rhizocarpon geographicum s.l were measured on 25 avalanche boulder tongues in the Massif des Ecrins to elucidate the Little Ice Age history of avalanche activity. Results show: (1) an increase of lichen size from the median to the distal zone of deposits, and a decrease from the edges to the centre; (2) three types of lichen settlement. From the uppermost to the median zone, lichens are absent, because avalanche activity is very active. Down‐slope, lichens occur in two different zones: the median zone is colonized by 5–20 mm size lichens on sides of blocks protected from the abrasional action of avalanches, while in the distal zone lichen diameters are largest (>30 mm) and occur on all sides of the blocks. The spatial distribution of the lichens and their size according to elevation make it possible to distinguish different phases during which avalanche activity has increased. At high elevation, the avalanche activity was at a maximum before ad 1650 and between ad 1730 and 1830. During these two periods avalanches had suf?cient magnitude to reach the basal zone of the deposits. At low elevation since ad 1650 the magnitude and frequency of avalanches have declined. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
13.
We apply the process‐based, distributed TOPKAPI‐ETH glacio‐hydrological model to a glacierized catchment (19% glacierized) in the semiarid Andes of central Chile. The semiarid Andes provides vital freshwater resources to valleys in Chile and Argentina, but only few glacio‐hydrological modelling studies have been conducted, and its dominant hydrological processes remain poorly understood. The catchment contains two debris‐free glaciers reaching down to 3900 m asl (Bello and Yeso glaciers) and one debris‐covered avalanche‐fed glacier reaching to 3200 m asl (Piramide Glacier). Our main objective is to compare the mass balance and runoff contributions of both glacier types under current climatic conditions. We use a unique dataset of field measurements collected over two ablation seasons combined with the distributed TOPKAPI‐ETH model that includes physically oriented parameterizations of snow and ice ablation, gravitational distribution of snow, snow albedo evolution and the ablation of debris‐covered ice. Model outputs indicate that while the mass balance of Bello and Yeso glaciers is mostly explained by temperature gradients, the Piramide Glacier mass balance is governed by debris thickness and avalanches and has a clear non‐linear profile with elevation as a result. Despite the thermal insulation effect of the debris cover, the mass balance and contribution to runoff from debris‐free and debris‐covered glaciers are similar in magnitude, mainly because of elevation differences. However, runoff contributions are distinct in time and seasonality with ice melt starting approximately four weeks earlier from the debris‐covered glacier, what is of relevance for water resources management. At the catchment scale, snowmelt is the dominant contributor to runoff during both years. However, during the driest year of our simulations, ice melt contributes 42 ± 8% and 67 ± 6% of the annual and summer runoff, respectively. Sensitivity analyses show that runoff is most sensitive to temperature and precipitation gradients, melt factors and debris cover thickness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Snow cloud growth rates of powder snow avalanche were obtained with analysing the pictures recorded in Ryggfonn, Norway. Although results showed wide scattering, as far as the data obtained in runout zone are concerned, they roughly agreed with the water tank experiments by Beghin and Olagne (1991).Air movement in snow avalanche cloud was measured with an ultra-sonic anemometer in Kurobe Canyon, Japan. It showed rising current existed near the front and downward at the trail. Comparing with drifting snow threshold and particle suspension criterion, entrainment, suspension and deposition of snow particles in the snow cloud were discussed.  相似文献   

16.
Ground penetrating radar (GPR) systems can be used in many applications of snow and ice research. The information from the GPR is used to identify and interpret layers, objects and different structures in the snow. A commercially available GPR system was further developed to work in the rough environment of snow and ice. The applied GPR is a 900 MHz system that easily reaches snow depths of up to 10 meters. The system was calibrated in the course of several manual snow depth measurements during each survey. The depth resolution depends on the snow type and is around ±0.1 m. The GPR system is carried alongside a line of interest and is triggered by an odometer wheel at regular adjustable steps. All equipment is mounted in a sledge and is pulled by a snowmobile over the snow surface. This setup allows for an efficient coverage of several kilometers of terrain profiles. The radar profiles give a real time two-dimensional impression of structures and objects and the interface between snow and the underlying ground. The actual radar profile is shown on a screen on the sledge allowing the immediate marking of objects and structures. During the past three years the instrument was successfully used for the study of snow distributions, for the detection of glacier crevasses under the snow cover, and for the search of avalanche victims in avalanche debris. The results show the capability of the instrument to detect persons and objects in the snow cover. In the future, this device may be a new tool for avalanche rescue operations. Today, the size and weight of the system prevents the accessing of very steep slopes and areas not accessible to snowmobiles. Further developments will decrease the size of the system and make it a valuable tool to quantify snow masses in avalanche release zones and run-out areas.  相似文献   

17.
18.
Dry and dense snow avalanches are considered as dry granular flows. Theirinteraction with dams is the main objective of this paper. We studied howvarying the dam height could shorten a granular avalanche run-out thanksto a set of simple laboratory experiments carried out on different scales.Shortening the run-out was expected to depend on two effects: (i) storageof the granular material upstream of the dam, and (ii) local energy dissipations.A scaling law is highlighted. As suggested by dimensional arguments, thecontribution of the local energy dissipation was shown to be more dominantthan the storage effects.  相似文献   

19.
These last 10 years, numerical models of mantle convection have emphasized the role of the 670 km endothermic phase change in generating avalanches that trigger catastrophic mass transfers between upper and lower mantle. On the other hand, scientists have emphasized the concomitance of large-scale worldwide geophysical and tectonic events, which could find their deep thermal roots in the huge mass transfers induced by the avalanches. In particular, the paleontological records show two periods of length of day (l.o.d.) shortening between 420 and 360, and 200 and 80 Myr BP. This last event is synchronous with a strong true polar wander and a global warming of the upper mantle. In order to study the potential effects of the avalanche on the main component of the Earth’s rotation, the Liouville equation has been solved and the l.o.d. evolution has been calculated from the perturbations of the inertia tensor. The results show that the inertia tensor of the Earth’s is mainly sensitive to the global transfers through the 670 km discontinuity. The l.o.d. perturbations will be synchronous with the global thermal effects of the avalanche. These theoretical results allow proposing a self-consistent physical mechanism to explain periods of the Earth’s rotation acceleration. Within this context, the l.o.d. shortening during the Cenozoic and Cretaceous brings one more clue to the possible participation of a mantle avalanche in generating the concomitant large scale events which have occurred during this very particular period of the Earth’s history.  相似文献   

20.
The evolution of glaciers and ice patches, as well as the equilibrium‐line altitude (ELA) since the Little Ice Age (LIA) maximum were investigated in the Julian Alps (south‐eastern European Alps) including ice masses that were previously unreported. Twenty‐three permanent firn and ice bodies have been recognized in the 1853 km2 of this alpine sector, covering a total area in 2012 of 0.385 km2, about one‐fifth of the area covered during the LIA (2.350 km2). These features were classified as very small glaciers, glacierets or ice patches, with major contribution to the mass balance from avalanches and wind‐blown snow. Localized snow accumulation is also enhanced in the area due to the irregular karst topography. The ice masses in the region are at the lowest elevations of any glaciers in the Alpine Chain, and are characterized by low dynamics. The ELAs of the two major LIA glaciers (Canin and Triglav) have been established at 2275 ± 10 m and 2486 ± 10 m, respectively, by considering the reconstructed area and digital elevation model (DEM) and using an accumulation area ratio (AAR) of 0.44 ± 0.07, typical of small cirque glaciers. Changes in the ELA and glaciers extension indicate a decoupling from climate. This is most evident in the smallest avalanche‐dominated ice bodies, which are currently controlled mainly by precipitation. The damming effect of moraine ridges and pronival ramparts at the snout of small ice bodies in the Julian Alps represents a further geomorphological control on the evolution of such ice masses, which seem to be resilient to recent climate warming instead of rapidly disappearing as should be expected. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号