首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of radars to characterize the physical properties of a snow cover offers an attractive alternative to manual snow pit measurements. Radar techniques are non-invasive and have the potential to cover large areas of a snow-covered terrain. A promising radar technique for snow cover studies is the frequency modulated continuous wave (FMCW) radar. The use of a multiband radar approach for snow cover studies was investigated in order to fully exploit the capabilities of FMCW radars. FMCW radars operating at and near the C-, X- and Ka-bands were used to obtain radar profiles over a wide range of snow cover conditions. These frequency-dependent radar signatures were used to identify important snow cover features such as ice and depth hoar layers. Snow grain size information was also obtained from the frequency-dependent scattering losses that were observed in the snow cover. Several case studies of FMCW radar profiles are presented in order to demonstrate the advantages of a multiband radar approach for monitoring the spatial and temporal variability of snow cover properties and/or processes over an extended area.  相似文献   

2.
An increase of the spatial and temporal resolution of snowpack measurements in Alpine or Arctic regions will improve the predictability of flood and avalanche hazards and increase the spatial validity of snowpack simulation models. In the winter season 2009, we installed a ground‐penetrating radar (GPR) system beneath the snowpack to measure snowpack conditions above the antennas. In comparison with modulated frequency systems, GPR systems consist of a much simpler technology, are commercially available and therefore are cheaper. The radar observed the temporal alternation of the snow height over more than 2·5 months. The presented data showed that with moved antennas, it is possible to record the snow height with an uncertainty of less than 8% in comparison with the probed snow depth. Three persistent melt crusts, which formed at the snow surface and were buried by further new snow events, were used as reflecting tracers to follow the snow cover evolution and to determine the strain rates of underlaying layers between adjacent measurements. The height in two‐way travel time of each layer changed over time, which is a cumulative effect of settlement and variation of wave speed in response to densification and liquid water content. The infiltration of liquid water with depth during melt processes was clearly observed during one event. All recorded reflections appeared in concordance with the physical principles (e.g. in phase structure), and one can assume that distinct density steps above a certain threshold result in reflections in the radargram. The accuracy of the used impulse radar system in determining the snow water equivalent is in good agreement with previous studies, which used continuous wave radar systems. The results of this pilot study encourage further investigations with radar measurements using the described test arrangement on a daily basis for continuous destruction‐free monitoring of the snow cover. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
水库冰气泡含量和密度对探地雷达测厚的影响分析(英文)   总被引:2,自引:0,他引:2  
在水库现场试验了RIS K2型探地雷达探测水库冰厚度的能力,试验时所用天线频率为600MHz;同步钻孔测量雷达探测处的冰厚度;以及在一个点上取样测试分析冰晶体、冰内气泡和冰密度。试验时冰面积雪厚度0.03-0.05m,冰层上部有0.24m粒状冰,其下均为柱状冰;冰内气泡含量呈表层高底层低分布;冰密度随气泡含量变化;冰厚度在平面内不均一。通过探测厚度和实测厚度的对比分析以及气泡含量对介电系数影响的理论分析,建立了积雪、粒状冰和柱状冰三层介质模型,获取雷达波在冰内的理论传递时间。结果发现:能够利用等效介电常数或等效传播速度评价雷达波传递时间,结冰期冰层1/3深度处的对应介电常数或传递速度可以作为等效值;另外因冰内大气泡造成的理论传递时间大于雷达探测时间,其差值随理论传递时间或冰厚的增加呈非线性增加。  相似文献   

4.
Reliable hydrological forecasts of snowmelt runoff are of major importance for many areas. Ground‐penetrating radar (GPR) measurements are used to assess snowpack water equivalent for planning of hydropower production in northern Sweden. The travel time of the radar pulse through the snow cover is recorded and converted to snow water equivalent (SWE) using a constant snowpack mean density from the drainage basin studied. In this paper we improve the method to estimate SWE by introducing a depth‐dependent snowpack density. We used 6 years measurements of peak snow depth and snowpack mean density at 11 locations in the Swedish mountains. The original method systematically overestimates the SWE at shallow depths (+25% for 0·5 m) and underestimates the SWE at large depths (?35% for 2·0 m). A large improvement was obtained by introducing a depth–density relation based on average conditions for several years, whereas refining this by using separate relations for individual years yielded a smaller improvement. The SWE estimates were substantially improved for thick snow covers, reducing the average error from 162 ± 23 mm to 53 ± 10 mm for depth range 1·2–2·0 m. Consequently, the introduction of a depth‐dependent snow density yields substantial improvements of the accuracy in SWE values calculated from GPR data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Ground‐penetrating radar (GPR) has become a promising technique in the field of snow hydrological research. It is commonly used to measure snow depth, density, and water equivalent over large distances or along gridded snow courses. Having built and tested a mobile lightweight set‐up, we demonstrate that GPR is capable of accurately measuring snow ablation rates in complex alpine terrain. Our set‐up was optimized for efficient measurements and consisted of a multioffset radar with four pairs of antennas mounted to a plastic sled, which was small enough to permit safe and convenient operations. Repeated measurements at intervals of 2 to 7 days were taken during the 2014/2015 winter season along 10 profiles of 50 to 200 m length within two valleys located in the eastern Swiss Alps. Resulting GPR‐based data of snow depth, density, and water equivalent, as well as their respective change over time, were in good agreement with concurrent manual measurements, in particular if accurate alignment between repeated overpasses could be achieved. Corresponding root‐mean‐square error (RMSE) values amounted to 4.2 cm for snow depth, 17 mm for snow water equivalent, and 22 kg/m3 for snow density, with similar RMSE values for corresponding differential data. With this performance, the presented radar set‐up has the potential to provide exciting new and extensive datasets to validate snowmelt models or to complement lidar‐based snow surveys.  相似文献   

6.
This study demonstrates the potential value of a combined unmanned aerial vehicle (UAV) Photogrammetry and ground penetrating radar (GPR) approach to map snow water equivalent (SWE) over large scales. SWE estimation requires two different physical parameters (snow depth and density), which are currently difficult to measure with the spatial and temporal resolution desired for basin-wide studies. UAV photogrammetry can provide very high-resolution spatially continuous snow depths (SD) at the basin scale, but does not measure snow densities. GPR allows nondestructive quantitative snow investigation if the radar velocity is known. Using photogrammetric snow depths and GPR two-way travel times (TWT) of reflections at the snow-ground interface, radar velocities in snowpack can be determined. Snow density (RSN) is then estimated from the radar propagation velocity (which is related to electrical permittivity of snow) via empirical formulas. A Phantom-4 Pro UAV and a MALA GX450 HDR model GPR mounted on a ski mobile were used to determine snow parameters. A snow-free digital surface model (DSM) was obtained from the photogrammetric survey conducted in September 2017. Then, another survey in synchronization with a GPR survey was conducted in February 2019 whilst the snowpack was approximately at its maximum thickness. Spatially continuous snow depths were calculated by subtracting the snow-free DSM from the snow-covered DSM. Radar velocities in the snowpack along GPR survey lines were computed by using UAV-based snow depths and GPR reflections to obtain snow densities and SWEs. The root mean square error of the obtained SWEs (384 mm average) is 63 mm, indicating good agreement with independent SWE observations and the error lies within acceptable uncertainty limits.  相似文献   

7.
We show how the studies of ice and snow cover of continental water bodies can benefit from the synergy of more than 15 years-long simultaneous active (radar altimeter) and passive (radiometer) observations from radar altimetric satellites (TOPEX/Poseidon, Jason-1, ENVISAT and Geosat Follow-On) and how this approach can be complemented by SSM/I passive microwave data to improve spatial and temporal coverage. Five largest Eurasian continental water bodies—Caspian and Aral seas, Baikal, Ladoga and Onega lakes are selected as examples. First we provide an overview of ice regime and history of ice studies for these seas and lakes. Then a summary of the existing state of the art of ice discrimination methodology from altimetric observations and SSM/I is given. The drawbacks and benefits of each type of sensor and particularities of radiometric properties for each of the chosen water bodies are discussed. Influence of sensor footprint size, ice roughness and snow cover on satellite measurements is also addressed. A step-by-step ice discrimination approach based on a combined use of the data from the four altimetric missions and SSM/I is presented, as well as validation of this approach using in situ and independent satellite data in the visible range. The potential for measurement of snow depth on ice from passive microwave observations using both altimeters and SSM/I is addressed and a qualitative comparison of in situ snow depth observations and satellite-derived estimates is made.  相似文献   

8.
9.
This work uses a one-dimensional, depth averaged model to compute the massbalance of a mixed flowing/powder snow avalanche. This model is comprisedof three basic components: the dense flowing avalanche, the powder cloud anda turbulent wake. The dynamics of a mixed avalanche is strongly dependent onthe interaction between the components and also on the snow cover and ambientair, in particular the exchange or entrainment of snow and air mass. Therefore, animportant first step for modelling mixed avalanches is a basic understanding of thenature of these mass exchanges. In this paper, the governing equations of mass,momentum and turbulent energy are briefly presented. Numerical simulations wererun for three avalanche tracks – Aulta, Galtür and Vallée de la Sionne – for whichdata from real snow avalanche events exist. Based on the results, conclusions weredrawn regarding the parameterisation of the mass exchanges. The mass balances forthese three contrasting avalanches are presented.  相似文献   

10.
Knowledge about snow mechanics and snow avalanche formation forms the basis of any hazard mitigation measures. The crucial point is the snow stability. The most relevant mechanical properties - the compressive, tensile and shear strength of the individual snow layers within the snow cover - vary substantially in space and time. Among other things the strength of the snow layers depends strongly on the state of stress and the strain rate. The evaluation of the stability of the snow cover is hence a difficult task involving many extrapolations.To gain insight in the release mechanism of slab avalanches triggered by skiers, the skier's impact is measured with a load cell at different depths within the snow cover and for different snow conditions. The study focused on the effects of the dynamic loading and of the damping by snow compaction. In accordance with earlier finite-element (FE) calculations the results show the importance of the depth of the weak layer or interface and the snow conditions, especially the sublayering.In order to directly measure the impact force and to study the snow properties in more detail, a new instrument, called rammrutsch was developed. It combines the properties of the rutschblock with the defined impact properties of the rammsonde. The mechanical properties are determined using (i) the impact energy of the rammrutsch and (ii) the deformations of the snow cover measured with accelerometers and digital image processing of video sequences. The new method is well suited to detect and to measure the mechanical processes and properties of the fracturing layers. The duration of one test is around 10 minutes and the method seems appropriate for determining the spatial variability of the snow cover. A series of experiments in a forest opening showed a clear difference in the snow stability between sites below trees and ones in the free field of the opening.  相似文献   

11.
Based on snow- and ice-thickness measurements at >11 000 points augmented by snow- and icecore studies during 4 expeditions from 1986 - 92 in the Weddell Sea, we describe characteristics and distribution patterns of snow and meteoric ice and assess their importance for the mass balance of sea ice. For first-year ice (FY) in the central and eastern Weddell Sea, mean snow depth amounts to 0.16 m (mean ice thickness 0.75 m) compared to 0.53 m (mean ice thickness 1.70 m) for second-year ice (SY) in the northwestern Weddell Sea. Ridged ice retains a thicker snow cover than level ice, with ice thickness and snow depth negatively correlated for the latter, most likely due to aeolian redistribution. During the different expeditions, 8, 15, 17 and 40% of all drill holes exhibited negative freeboard. As a result of flooding and brine seepage into the snow pack, snow salinities averaged 4‰. Through 18O measurements the distribution of meteoric ice (i.e. precipitation) in the sea-ice cover was assessed. Roughly 4% of the total ice thickness consist of meteoric ice (FY 3%, SY 5%). With a mean density of 290 kg/m3, the snow cover itself contributes 8% to total ice mass (7% FY, 11% SY). Analysis of 18O in snow indicates a local maximum in accumulation in the 65 to 75^S latitude zone. Hydrogen peroxide in the snow has proven useful as a temporal tracer and for identification of second-year floes. Drawing on accumulation data from stations at the Weddell Sea coast, it becomes clear that the onset of ice growth is important for the evolution of ice thickness and the interaction between ice and snow. Loss of snow to leads due to wind drift may be considerable, yet is reduced owing to metamorphic processes in the snow column. This is confirmed by a comparison of accumulation data from coastal stations and from snow depths over sea ice. Temporal and spatial accumulation patterns of snow are shown to be important in controlling the sea-ice cover evolution.  相似文献   

12.
Ground penetrating radar (GPR) is a powerful tool for detecting defects in and behind reinforced concrete (RC) structures. However, the traditional way of interpreting GPR data involves considerable manpower and is time-consuming. The aim of this study is to illustrate a new approach to recognize GPR images of RC structure voids automatically. Firstly, synthetic GPR images are created by FDTD method. As multiple waves caused by steel bars seriously interfere with the target echo signals, it is difficult to identify targets from the forward modeling images. According to the periodicity of multiple waves from steel bars, the predictive deconvolution method is used to suppress those waves and the outcome is preferable. Then, the support vector machine (SVM) algorithm is proposed to automatically recognize voids in GPR images. The automatic identification procedure includes four steps: 1) collecting training data, 2) extracting features from GPR images, 3) building the SVM model and 4) identifying the voids automatically. The results show that the proposed method provides a suitable tool to locate the cover depths and lateral ranges of the voids, and the trained SVM model gives a favorable outcome when noise (no more than 5%) is added to a synthetic GPR image.  相似文献   

13.
The structure and ice content of ice caves are poorly understood. Ground penetrating radar (GPR) can provide useful insights but has only rarely been applied to ice caves. This paper interprets GPR images (radargrams) in terms of internal structure, stratification, compaction, thickness and volume of the ice block in the Peña Castil ice cave (Central Massif of Picos de Europa, northern Spain), providing the endokarst geometry of the ice cave in GPR data reflections. Eight radargrams were obtained by applying a shielded ground‐coupled antenna with a nominal frequency of 400 MHz. Although the radargrams do not depict the ice–basal bedrock interface, they suggest that the ice block is at least 54 m deep and similarly thick. Some curved reflection signatures suggest a potential vertical displacement in the block of ice, and thus certain dynamics in the ice body. Other images show numerous interbedded clasts and thin sediment layers imaged as banded reflections. In this particular cave a direct visual inspection of the ice stratigraphy is a difficult task but GPR provides clear reflectivity patterns of some of its internal features, making GPR a suitable instrument for this and future studies to achieve a better and broader understanding of the internal behavior of ice caves.  相似文献   

14.
Abstract Ground penetrating radar (GPR) and high‐resolution shallow reflection seismic surveying were carried out to investigate the subsurface geology in and around the Uemachi Fault zone in the Yamato River area, Osaka, Japan. Shallow drilling in the area showed a major displacement event during the middle Pleistocene. The main Uemachi Fault plane could be clearly imaged on the seismic section, except for the most shallow 200 m. Several shallow normal fault planes with less displacement could be detected on both sides of the fault plane. GPR profiles confirmed the presence of several shallow normal faults within the area near the fault zone. These shallow faults could be followed in all of the GPR profiles crossing the fault zone. The integration of seismic section, GPR profiles and drilling data led to a conceptual model that explains the evolution of the Uemachi Fault system. The proposed model suggests the occurrence of several cycles of small vertical displacement along the deep part of the fault plane caused by the regional east–west compressional stress. The ductile nature of the shallow sedimentary cover and the absence of confining pressure in the shallow part allow for a considerable amount of plastic bending before failing in the shallow sedimentary layers. This bending generates stretching force within the shallow sedimentary cover, which in time, along with gravitational force, gives rise to the formation of the swarm of normal faults within the shallow layers near the fault zone. Some of the detected faults extend to a depth of less than 3 m below the ground surface, suggesting that the last tectonic activity along the fault plane may have occurred recently.  相似文献   

15.
In recent years, ground‐penetrating radar (GPR) has been increasingly used for characterization of subglacial and englacial environments at polythermal glaciers. The geophysical method is able to exploit the dielectric difference between water, air, sediment and ice, allowing delineation of subsurface hydrological, thermal and structural conditions. More recent GPR research has endeavoured to examine temporal change in glaciers, in particular the distribution of the cold ice zone at polythermal glaciers. However, the exact nature of temporal change that can be identified using GPR has not been fully examined. This research presents the results of three GPR surveys conducted over the course of a summer ablation season at a polythermal glacier in the Canadian Arctic. A total of approximately 30 km of GPR profiles were collected in 2002 repeatedly covering the lower 2 km of Stagnation Glacier, Bylot Island (72°58′ N 78°22′ W). Comparison between profiles indicated changes in the radar signature, including increased noise, appearance and disappearance of englacial reflections, and signal attenuation in the latter survey. Further, an area of chaotic returns in up‐glacier locations, which was interpreted to be a wet temperate ice zone, showed marked recession over the course of the ablation season. Combining all the temporal changes that were detected by GPR, results indicate that a polythermal glacier may exhibit strongly seasonal changes in hydrological and thermal characteristics throughout the ice body, including the drainage of 17 000 m3 of temporarily stored intra‐glacial meltwater. It is also proposed that the liquid water content in the temperate ice zone of polythermal glaciers can be described as a fraction of a specific retention capacity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Xuan Wang  Ian Baker 《水文研究》2017,31(4):871-879
To simplify the complex snow structures that occur in nature, polycrystalline ice spheres were produced and arranged vertically to model the sintering process. By controlling the temperatures on both the top and bottom of the ice sphere array, the effect of upward and downward vapor transfers was examined. The evolution of the neck areas between ice spheres was observed using X‐ray computed microtomography. As frequently observed under the basal part of a snow layer and previous experiments of snow temperature gradient metamorphism, depth hoar structures were formed along neck areas and their formation was found to be directly related to the vapor transfer direction. To model the temperature gradient inversion that can be induced in nature by daily cycles of radiative heating and cooling, we also performed sign‐alternating temperature gradient experiments on the ice sphere arrays. The morphological evolution of the neck and the associated vapor transfer were examined through image analysis and 2D modeling. The final microstructures of the neck area turned out to be a symmetrical distribution of ice protrusions bridging neighboring ice spheres.  相似文献   

17.
The distribution of small fractures and water content of the Fourcade glacier on King George Island, Antarctica, was investigated in November 2006 and December 2007 by two ground-based (470-and 490-m-long profiles) and one helicopter-borne (470-m-long profile) ground-penetrating radar (GPR) surveys using 50-, 100-, and 500-MHz antennas. Radar images in the pre-migrated GPR sections are characterized by a smooth ice surface and irregular bed topography, numerous diffraction hyperbolas in the ice and at the g...  相似文献   

18.
The aim of this work is to compare macroturbulent coherent structures (MCS) geometry and organization between ice covered and open channel flow conditions. Velocity profiles were obtained using a Pulse‐Coherent Acoustic Doppler Profiler in both open channel and ice‐covered conditions. The friction imposed by the ice cover results in parabolic shaped velocity profiles. Reynolds stresses in the streamwise (u) and vertical (v) components of the flow show positive values near the channel bed and negative values near the ice cover, with two distinctive boundary layers with specific turbulent signatures. Vertically aligned stripes of coherent flow motions were revealed from statistics applied to space‐time matrices of flow velocities. In open channel conditions, the macroturbulent structures extended over the entire depth of the flow whereas they were discontinued and nested close to the boundary walls in ice‐covered conditions. The size of MCS is consequently reduced in scale under an ice cover. The average streamwise length scale is reduced from 2.5 to 0.4Y (u) and from 1.5 to 0.4Y (v) where Y is the flow depth. In open channel conditions, the vertical extent of MCS covers the entire flow depth, whereas the vertical extent was in the range 0.58Y–1Y (u) and 0.81Y–1Y (v) in ice‐covered conditions. Under an ice cover, each boundary wall generates its own set of MCS that compete with each other in the outer region of the flow, enhancing mixing and promoting the dissipation of coherent structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Ground-penetrating radar (GPR) experiments were conducted on a Quaternary sedimentary (made up of gravel, sand and loess) site to image the structures and tectonic features. Two sets of antennae, 50 and 100 MHz, have been tested in a water saturated alluvial deposits (mostly sand and gravel). The 100 MHz antennae provided adequate penetration depth and allowed better lateral continuity and resolution of the subsurface targets than the 50 MHz antennae. Results show that most of GPR data are contaminated by strong diffraction hyperbolae caused by above-ground objects near the survey line. Therefore, it is very important to recognize the diffractions through air and not to confuse them with the reflections from underground geologic features. Despite the air diffraction problem, the GPR data allow us to prospect subsurface sedimentary and tectonic structures. Water table, channels and meander bars are observed on GPR data. Most of these observations are correlated with borehole and trench data.  相似文献   

20.
In arctic streams, depth of thaw beneath the stream channel is likely a significant parameter controlling hyporheic zone hydrology and biogeochemical cycling. As part of an interdisciplinary study of this system, we conducted a field investigation to test the effectiveness of imaging substream permafrost using ground‐penetrating radar (GPR). We investigated three sites characterized by low‐energy water flow, organic material lining the streambeds, and water depths ranging from 0·2 to 2 m. We acquired data using a 200 MHz pulsed radar system with the antennas mounted in the bottom of a small rubber boat that was pulled across the stream while triggering the radar at a constant rate. We achieved excellent results at all three sites, with a clear continuous image of the permafrost boundary both peripheral to and beneath the stream. Our results demonstrate that GPR can be an effective tool for measuring substream thaw depth. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号