首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Several recent studies have shown that the star cluster initial mass function (CIMF) can be well approximated by a power law, with indications for a steepening or truncation at high masses. This contribution considers the evolution of such a mass function due to cluster disruption, with emphasis on the part of the mass function that is observable in the first ∼1 Gyr. A Schechter type function is used for the CIMF, with a power-law index of −2 at low masses and an exponential truncation at M *. Cluster disruption due to the tidal field of the host galaxy and encounters with giant molecular clouds flattens the low-mass end of the mass function, but there is always a part of the 'evolved Schechter function' that can be approximated by a power law with index −2. The mass range for which this holds depends on age, τ, and shifts to higher masses roughly as  τ0.6  . Mean cluster masses derived from luminosity-limited samples increase with age very similarly due to the evolutionary fading of clusters. Empirical mass functions are, therefore, approximately power laws with index −2, or slightly steeper, at all ages. The results are illustrated by an application to the star cluster population of the interacting galaxy M51, which can be well described by a model with   M *= (1.9 ± 0.5) × 105 M  and a short (mass-dependent) disruption time destroying M * clusters in roughly a Gyr.  相似文献   

8.
A revision of Stodółkiewicz's Monte Carlo code is used to simulate evolution of large star clusters. The new method treats each superstar as a single star and follows the evolution and motion of all individual stellar objects. A survey of the evolution of N -body systems influenced by the tidal field of a parent galaxy and by stellar evolution is presented. The process of energy generation is realized by means of appropriately modified versions of Spitzer's and Mikkola's formulae for the interaction cross-section between binaries and field stars and binaries themselves. The results presented are in good agreement with theoretical expectations and the results of other methods (Fokker–Planck, Monte Carlo and N -body). The initial rapid mass loss, resulting from stellar evolution of the most massive stars, causes expansion of the whole cluster and eventually leads to the disruption of less bound systems ( W 0=3). Models with larger W 0 survive this phase of evolution and then undergo core collapse and subsequent post-collapse expansion, like isolated models. The expansion phase is eventually reversed when tidal limitation becomes important. The results presented are the first major step in the direction of simulating evolution of real globular clusters by means of the Monte Carlo method.  相似文献   

9.
10.
We have obtained spectroscopic redshifts of colour-selected point sources in four wide area VLT-FLAMES (Very Large Telescope-Fibre Large Array Multi Element Spectrograph) fields around the Fornax cluster giant elliptical galaxy NGC 1399, identifying as cluster members 27 previously unknown faint     compact stellar systems (CSS), and improving redshift accuracy for 23 previously catalogued CSS.
By amalgamating our results with CSS from previous 2dF observations and excluding CSS dynamically associated with prominent (non-dwarf) galaxies surrounding NGC 1399, we have isolated 80 'unbound' systems that are either part of NGC  1399's globular cluster (GC) system or intracluster GCs. For these unbound systems, we find (i) they are mostly located off the main stellar locus in colour–colour space; (ii) their projected distribution about NGC  1399 is anisotropic, following the Fornax cluster galaxy distribution, and there is weak evidence for group rotation about NGC  1399; (iii) their completeness-adjusted radial surface density profile has a slope similar to that of NGC  1399's inner GC system; (iv) their mean heliocentric recessional velocity is between that of NGC  1399's inner GCs and that of the surrounding dwarf galaxies, but their velocity dispersion is significantly lower; (v) bright CSS  ( M V < −11)  are slightly redder than the fainter systems, suggesting they have higher metallicity; (vi) CSS show no significant trend in   g '− i '  colour index with radial distance from NGC  1399.  相似文献   

11.
Recent images taken with the Hubble Space Telescope ( HST ) of the interacting disc galaxies NGC 4038/4039 (the Antennae) reveal clusters of many dozens and possibly hundreds of young compact massive star clusters within projected regions spanning about 100 to 500 pc. It is shown here that a large fraction of the individual star clusters merge within a few tens to a hundred Myr. Bound stellar systems with radii of a few hundred parsecs, masses ≲ 109 M⊙ and relaxation times of 1011 − 1012 yr may form from these. These spheroidal dwarf galaxies contain old stars from the pre-merger galaxy and much younger stars formed in the massive star clusters, and possibly from later gas accretion events. The possibility that star formation in the outer regions of gas-rich tidal tails may also lead to superclusters is raised. The mass-to-light ratio of these objects is small, because they contain an insignificant amount of dark matter. After many hundred Myr such systems may resemble dwarf spheroidal satellite galaxies with large apparent mass-to-light ratios, if tidal shaping is important.  相似文献   

12.
The present work extends and deepens previous examinations of the evolution of globular cluster orbits in elliptical galaxies, by means of numerical integrations of a wide set of orbits in five self-consistent triaxial galactic models characterized by a central core and different axial ratios. These models are valid and complete in the representation of regular orbits in elliptical galaxies. Dynamical friction is definitely shown to be an efficient cause of evolution for the globular cluster systems in elliptical galaxies of any mass or axial ratio. Moreover, our statistically significant sample of computed orbits confirms that the globular cluster orbital decay times are, at least for clusters moving on box orbits, much shorter than the age of the galaxies. Consequently, the mass carried into the innermost galactic region in the form of decayed globular clusters may have contributed significantly to feeding and accreting a compact object therein.  相似文献   

13.
14.
Recently, De Marchi, Paresce & Pulone studied a sample of 20 globular clusters and found that all clusters with high concentrations have steep stellar mass functions while clusters with low concentration have comparatively shallow mass functions. No globular clusters were found with a flat mass function and high concentration. This seems curious since more concentrated star clusters are believed to be dynamically more evolved and should have lost more low-mass stars via evaporation, which would result in a shallower mass function in the low-mass part.
We show that this effect can be explained by residual-gas expulsion from initially mass segregated star clusters, and is enhanced further through unresolved binaries. If gas expulsion is the correct mechanism to produce the observed trend in the   c –α  -plane, then observation of these parameters would allow to constrain cluster starting conditions such as star formation efficiency and the time-scale of gas expulsion.  相似文献   

15.
16.
17.
We apply the method of principal component analysis to a sample of simple stellar populations to select some age-sensitive spectral indices. Besides the well-known age-sensitive index, H β , we find that some other spectral indices have great potential to determine the age of stellar populations, such as G4300, Fe4383, C24668, and Mg b . In addition, we find that the sensitivity to age of these spectral indices depends on the metallicity of the simple stellar population (SSP): H β and G4300 are more suited to determine the age of the low-metallicity stellar population, C24668 and Mg b are more suited to the high-metallicity stellar population. The results suggest that the principal component analysis method provides a more objective and informative alternative to diagnostics by individual spectral lines.  相似文献   

18.
19.
20.
Recent observational studies of intermediate-age star clusters (SCs) in the Large Magellanic Cloud (LMC) have reported that a significant number of these objects show double main-sequence turn-offs (DMSTOs) in their colour-magnitude diagrams (CMDs). One plausible explanation for the origin of these DMSTOs is that the SCs are composed of two different stellar populations with age differences of ∼300 Myr. Based on analytical methods and numerical simulations, we explore a new scenario in which SCs interact and merge with star-forming giant molecular clouds (GMCs) to form new composite SCs with two distinct component populations. In this new scenario, the possible age differences between the two different stellar populations responsible for the DMSTOs are due largely to secondary star formation within GMCs interacting and merging with already-existing SCs in the LMC disc. The total gas masses being converted into new stars (i.e. the second generation of stars) during GMC-SC interaction and merging can be comparable to or larger than the masses of the original SCs (i.e. the first generation of stars) in this scenario. Our simulations show that the spatial distributions of new stars in composite SCs formed from GMC-SC merging are more compact than those of stars initially in the SCs. We discuss both advantages and disadvantages of the new scenario in explaining fundamental properties of SCs with DMSTOs in the LMC and in the Small Magellanic Cloud (SMC). We also discuss the merits of various alternative scenarios for the origin of the DMSTOs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号