首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
A ~6 Ma Messinian (late Miocene) Bioherm Unit on the southern slope of the Sorbas Basin, SE Spain, contains numerous biotically diverse lensoid patch reefs that formed on a shelf to basin slope during a cycle of relative sea-level change. Halimeda reefs are the largest and most complex of the patch reefs and are divisible into core, cap, and flank facies. On the upper and midslope they are up to 40 m thick and 400 m long. They become smaller downslope. The core consists of jumbled Halimeda segments, released by spontaneous disaggregation of the alga. The segments were stabilized close to their sites of growth and rapidly lithified by micritic and peloidal microbial crusts. Residual cavities were further veneered by isopachous marine cements. Flank facies, consisting of bedded packstones to rudstones, form wedge-shaped units lateral to the mounds. Cap facies consist of bioclastic calcarenites/calcirudites and microbial carbonates. Synsedimentary lithification assisted rapid accretion and inhibited off-mound export of sediment. Allochthonous reef-derived blocks on the mid-slope reflect penecontemporaneous rigidity of the Halimeda bioherms. Proximal Porites coral frame patch reefs associated with calcarenites were located near the shelf margin during the initial lowstand stage. Halimeda segment reefs associated with calcarenites and silty marls developed on the midslope and bivalve-bryozoan-serpulid reefs formed on the lower slope in silty marls with occasional turbidites. During the transgressive stage, coral patch reefs near the shelfbreak were overgrown by Halimeda. During highstand progradation, cap facies spread basinward as a sheet connecting many of the midslope patch reefs. These ancient analogues differ from most modern Halimeda reefs in being discrete laterally restricted patch reefs, surrounded by marly sediment, and located on a slope. They are, however, broadly comparable in biota, thickness, and depositional depth. Intense early lithification by microbial crusts and marine cements is an important feature of these Messinian segment reefs. It has not been reported from modern examples.  相似文献   

2.
The Cariatiz section lies at the toe of the palaeoslope of the Messinian Cariatiz fringing reef, at the northern margin of the Neogene Sorbas Basin in SE Spain. Distal-slope reef deposits in the upper part of the section can be traced laterally to the reef core of the last episodes of reef progradation. The underlying deposits are alternating diatomitic marl, marl and silty marl that intercalate with sandstone beds. Combined lithological changes, variations in proportions of warm-water planktic foraminifera and δ 18O values suggest that at least seven, probably precessional, cycles are recorded throughout the Cariatiz section. The correlation of seven cycles in the pelagic deposits to seven reef progradation cycles, and associated vertical shifts in reef facies, indicates relative sea-level oscillations of several tens of metres. Biostratigraphic and palaeomagnetic data suggest that both the Cariatiz section and the fringing reef formed during the reverse polarity Chron C3r. Surface-water temperatures seem to be the major factor controlling carbonate production in the reef system. Deposition of bioclastic calcirudite and calcarenite, with no active coral growth, took place at the lowest sea-level within each reef cycle during temperature minima within each precessional cycle. Porites framework and reef-slope deposits with Halimeda gravel, in contrast, formed during temperature rises and thermal maxima within precessional cycles.  相似文献   

3.
Geological mapping, definition of facies distributions and reconstruction of platform‐interior growth geometries of the Messinian Cariatiz carbonate platform (Sorbas basin, South Spain), were performed to evaluate the controlling factors in platform growth and to test a 3‐D computer simulation program. For the simulation with the program REPRO, five platform‐related facies were modelled: (1) the reef crest facies by the numerical solution of a Fisher equation; (2) the lagoonal facies by a function of water depth‐dependent carbonate production; (3) the proximal and middle slope facies (breccia and block facies, calcarenite facies) by a subroutine simulating gravity‐driven particle export from the reef crest; (4) a distal slope; and (5) a basinal facies by a pelagic rain function. Development of a fan delta conglomeratic system is simulated by using a siliciclastic point source and gravity‐driven particle redistribution. A best fit between the observed platform growth geometries and modelling results is achieved by assuming that high‐frequency sea‐level changes superimposed onto a longer term sea‐level fall controlled platform growth. For the modelling, a relative sea‐level curve was reconstructed, which is based on a deep‐sea benthic foraminiferal stable oxygen isotope record at ODP Site 926 with a 45 m eustatic sea‐level fall, and a tectonic uplift component of 20 m. The consistency of 3‐D simulation results is corroborated by the coral growth rates provided by the Fisher‐equation subroutine. These rates of 2–8 mm year−1 compare well to the coral growth rates in Recent fringing reefs. We propose that during the early stage of platform evolution the high‐frequency fluctuations were obliquity‐modulated precessional cycles, whereas precessional cycles control later stages of platform growth. REPRO provides a separate visualization of the different facies bodies as a function of time and space, showing the intrinsic pattern of facies distribution in the platform. This is the result of a combination of platform growth and syndepositional subaerial erosion. For example, only the youngest stages of reef framework facies in the development of the Cariatiz carbonate platform are preserved.  相似文献   

4.
The Sorbas Member is a late Messinian complex sedimentary system that formed immediately following deposition of the Messinian evaporites in the Sorbas Basin (South‐east Spain). This work describes the sequence architecture and facies organization of a continuous kilometre long, alluvial fan to open platform transect near the village of Cariatiz in the north‐east of the basin. The post‐evaporitic Cariatiz platform was a mixed carbonate‐siliciclastic system composed of four intermediate‐frequency, fifth‐order depositional sequences (Depositional Sequences 1 to 4) arranged in an overall prograding trend. The intense fracturing and brecciation of these deposits is attributed to the deformation and dissolution of an evaporite body measuring several tens of metres in thickness. The four sequences display significant spatial–temporal variability in both architecture and facies distribution, with two main phases: (i) Depositional Sequences 1 and 2 are ooid and oobioclastic dominated, and show normal marine faunas; and (ii) Depositional Sequences 3 and 4 show a higher siliciclastic contribution and are microbialite dominated. These important changes are interpreted as modifications of the primary controlling factors. Following an initial 70 m drowning, possibly linked to increased oceanic input, Depositional Sequences 1 to 3 were controlled mainly by eustatic variations and inherited topography; their progradation destabilized the evaporite body near the end of the Depositional Sequence 2 period. During the second phase, Depositional Sequences 3 and 4 recorded a progressive restriction of the Sorbas Basin related to a 30 to 40 m fall in water level that was driven mainly by regional factors. These regional factors were dissolution and gravity‐induced deformation of the evaporites and correlative evaporative fluid circulation associated with the contrasted arid/humid regional climate that, respectively, controlled sequence geometry and fluctuating water salinity which caused a microbialite bloom.  相似文献   

5.
Past hydrological interactions between the Mediterranean Sea and Black Sea are poorly resolved due to complications in establishing a high‐resolution time frame for the Black Sea. We present a new greigite‐based magnetostratigraphic age model for the Mio‐Pliocene deposits of DSDP Hole 380/380A, drilled in the southwestern Black Sea. This age model is complemented by 40Ar/39Ar dating of a volcanic ash layer, allowing a direct correlation of Black Sea deposits to the Messinian salinity crisis (MSC) interval of the Mediterranean Sea. Proxy records divide these DSDP deposits into four intervals: (i) Pre‐MSC marine conditions (6.1–6.0 Ma); (ii) highstand, fresh to brackish water conditions (~6.0–5.6 Ma); (iii) lowstand, fresh‐water environment (5.6–5.4 Ma) and (iv) highstand, fresh‐water conditions (5.4–post 5.0 Ma). Our results indicate the Black Sea was a major fresh‐water source during gypsum precipitation in the Mediterranean Sea. The introduction of Lago Mare fauna during the final stage of the MSC coincides with a sea‐level rise in the Black Sea. Across the Mio‐Pliocene boundary, sea‐level and salinity in the Black Sea did not change significantly.  相似文献   

6.
How the Messinian Salinity Crisis (MSC) ended is still a matter of intense debate. The Terminal Carbonate Complex (TCC) is a late Messinian carbonate platform system that recorded western Mediterranean hydrological changes from the final stages of evaporite deposition till the advent of Lago-Mare fresh- to brackish water conditions at the very end of Messinian times. A multidisciplinary study has been carried out in three localities in south-eastern Spain to reconstruct the history of TCC platforms and elucidate their significance in the MSC. Overall, this study provides evidence that the TCC formed following a regional 4th order water level rise and fall concomitant with an opening-restriction trend. It can be subdivided into four 5th order depositional sequences (DS1 to DS4) recording two phases: (1) from DS1 to DS3, a tide-dominated ooidic to oobioclastic system with stenohaline faunas developed as a result of a 70 m water level rise. During this period, the TCC developed in a shallow sea with close to normal marine salinity; (2) in depositional sequence 4, a microbialite-dominated platform system developed. This is indicative of a significant environmental change and is attributed to a 30 to 40 m water level fall in the basins under study. These restricted conditions were coeval with intense evaporite deformation and brine recycling. The syn-sedimentary deformation of evaporites had a major impact on platform architecture and carbonate production, affecting the Messinian series throughout south-eastern Spain at the end of the TCC history. At that time, the TCC developed in a lake with fluctuating, brackish- to hypersaline water. These findings suggest a temporary restoration of marine conditions in the western Mediterranean marginal basins due to Atlantic water influxes prompted by a global sea level rise around 5.6 Ma. Whether marine conditions extended to the entire western Mediterranean still needs to be investigated.  相似文献   

7.
We propose a revised age calibration of the Messinian salinity crisis onset in the Mediterranean at 5.971 Ma based on the recognition of an extra gypsum cycle in the transitional interval of the Perales section (Sorbas basin, Spain) and the revision of the magnetostratigraphy of the Monticino section (Vena del Gesso basin, Italy). This age re‐calibration allows to state more accurately that: (i) the interval encompassing the MSC‐onset is continuous, thus ruling out any erosional feature or stratigraphic hiatus related to a major sea‐level fall affecting the Mediterranean; (ii) the first gypsum was deposited during the summer insolation peak at 5.969 Ma associated with an eccentricity minimum and roughly coincident with glacial stage TG32; (iii) the MSC‐onset was preconditioned by the tectonically‐driven reduction of the hydrological exchanges with the Atlantic Ocean and finally triggered by glacial conditions in the northern hemisphere and by arid conditions in northern Africa.  相似文献   

8.
9.
Astronomical tuning of the Messinian pre‐salt succession in the Levant Basin allows for the first time the reconstruction of a detailed chronology of the Messinian salinity crisis (MSC) events in deep setting and their correlation with marginal records that supports the CIESM ( 2008 ) 3‐stage model. Our main conclusions are (1) MSC events were synchronous across marginal and deep basins, (2) MSC onset in deep basins occurred at 5.97 Ma, (3) only foraminifera‐barren, evaporite‐free shales accumulated in deep settings between 5.97 and 5.60 Ma, (4) deep evaporites (anhydrite and halite) deposition started later, at 5.60 Ma and (5) new and published 87Sr/86Sr data indicate that during all stages, evaporites precipitated from the same water body in all the Mediterranean sub‐basins. The wide synchrony of events and 87Sr/86Sr homogeneity implies inter‐sub‐basin connection during the whole MSC and is not compatible with large sea‐level fall and desiccation of the Mediterranean.  相似文献   

10.
The Messinian Salinity Crisis (MSC) resulted from a significant multi-phase drop and subsequent reflooding of the Mediterranean Sea from 5.96 to 5.33 Ma. Well-developed drainage networks, characterized by step-like profiles and abrasion platforms, are associated to this event. The Ebro Continental Margin (Western Mediterranean) presents an additional complexity since the capture of the drainage of the adjacent subaerial Ebro Basin took place sometime prior to the Messinian stage. Using 3D seismic reflection data, this work provides new insights into the origin of the step-like profile of the Messinian erosional surface (MES) and timing of the capture of the subaerial Ebro Basin. The results obtained indicate a sedimentary-active continental slope and delta progradation during Middle-Late Miocene, in a normal regressive context associated to a pre-Messinian proto-Ebro River. The mature development attained by the Messinian Ebro River network during the MSC corroborates that the capture of the Ebro Basin occurred prior to the MSC. The configuration of the clinoforms below the MES suggests that deltaic sediments of the Messinian Paleo-Ebro River deposited during the Tortonian and initial Messinian sea-level drawdown. The MES formed at the top of the Tortonian Highstand, where a fluvial network was deeply carved, and in the topset region of the Messinian Falling Stage Systems Tract, where minor erosion occurred. Fluvial deposits are outstandingly preserved on the main valleys of the MES. Therefore, the step-like profile of the MES was not created during Zanclean inundation, but during the latest stages of the main Messinian sea-level fall and lowstand.  相似文献   

11.
We reconstructed vegetation responses to climate oscillations, fire and human activities since the last glacial maximum in inland NW Iberia, where previous paleoecological research is scarce. Extremely sparse and open vegetation composed of steppic grasslands and heathlands with scattered pioneer trees suggests very cold and dry conditions during the Oldest Dryas, unsuitable for tree survival in the surroundings of the study site. Slight woodland expansion during the Bølling/Allerød was interrupted by the Younger Dryas cooling. Pinewoods dominated for most of the early Holocene, when a marked increase in fire activity occurred. Deciduous trees expanded later reaching their maximum representation during the mid-Holocene. Enhanced fire activity and the presence of coprophilous fungi around 6400–6000 cal yr BP suggest an early human occupation around the site. However, extensive deforestation only started at 4500 cal yr BP, when fire was used to clear the tree canopy. Final replacement of woodlands with heathlands, grasslands and cereal crops occurred from 2700 cal yr BP onwards due to land-use intensification. Our paleoecological record can help efforts aimed at restoring the natural vegetation by indicating which communities were dominant at the onset of heavy human impact, thus promoting the recovery of currently rare oak and alder stands.  相似文献   

12.
The CO2-rich thermal groundwater in the Betic Cordilleras in Spain has been studied with regard to the geological and hydrogeological setting, physical and chemical characteristics, and 13C-isotope content. The study area is about 60 km northeast of Almería city, in southeastern Spain. The thermomineral waters are plentiful and are related to regional geothermal anomalies. Temperatures of 20 −41°C, high bicarbonate concentrations (183–1824 mg/L), and high amounts of PCO2 (<1.1 bar) characterize the groundwater. CO2 spatial variations are related to proximity to the Carboneras, Palomares, and Guadalentín fault systems, which may be the surface representation of the zone of crustal thinning and magmatism. δ 13C values probably indicate a deep source for the CO2, either the mantle or perhaps carbonate rocks in the metamorphic substratum. The high amount of CO2 in the groundwater causes problems in wells and severely restricts water usage. The hydrothermal features of this area are probably related to neotectonic activity. Received, September 1998/Revised, June 1999, September 1999/Accepted, December 1999  相似文献   

13.
块状搬运复合体是深水地层的重要组成部分。块状搬运沉积对深水储层研究具有重要意义。以琼东南盆地中央峡谷区为例,利用高分辨率三维地震资料探讨了块状搬运复合体的识别特征及其在油气勘探中的意义。研究发现:块状搬运复合体的边界变化大,内部常见滑块、推覆体和杂乱反射;块状搬运复合体往往不是油气勘探的首先目标,但可形成潜在的深水地层圈闭,同时还可以作为盖层和烃源岩。  相似文献   

14.
荆州地区晚三叠世—中侏罗世地层及沉积环境   总被引:1,自引:1,他引:1  
董云鹏 《地层学杂志》1997,21(2):130-135
晚三叠世—中侏罗世沉积地层特征表明,该时期荆州地区为前陆盆地构造环境,形成于秦岭造山带南部前陆地带,沉积特征及上下接触关系表明其为Ⅰ级构造层。上三叠统和中下侏罗统具有相反的粒序特征和不同的建造特征,分属于两个Ⅱ级层序,分别由3个和7个Ⅲ级层序构成。综合研究结果表明,荆州前陆盆地经历了三个演化阶段,即挠曲变形阶段(T3j)—粘弹性流变阶段(T3w)—后期前陆盆地演化阶段(J1-2),不同演化阶段前陆盆地沉降中心及前隆具纵向迁移的特征,同时,沉积盆地规模及拗陷幅度亦显示规律性变化。  相似文献   

15.
It is proposed by the authors in the light of isotopie age data available that anorthosite events are advisable to be assigned to two periods, i.e., the Karelian period (1,700–2,00 m.y.) and the Grenville period (1.000–1.300 m.y.), rather than simply to a time span of 1,300±200 m.y. as suggested by N. Herz in 1969. This division is in agreement with the earth history. It is noticed that anorthosites always occur in the mobile zones between plates, indicating a close relationship with deep faults. Anorthosites of the Karelian period are found principally in tectonic zones that strike approximately NWW or NEE in Eurasian (possibly North American) plate. Grenville anorthosites, constituting two (possibly three) belts running roughly in NNE or NNW direction, occur in orogenic zones marginal to the present continents resulting from the breaking up of Pangaca. This suggests that the breaking up of the ancient continent of Pangaea started to operate as early as late Precambrian and was probably responsible for the continental drift along these tectonic belts during late Palaeozoic.  相似文献   

16.
The signature of the Mediterranean Messinian Salinity Crisis (MSC) in the Paratethys has received wide attention because of the inferred changes in connectivity and base level. In this article, we present sequence stratigraphic interpretations on a seismic transect across the western part of the semi-isolated Late Miocene–Pliocene Dacic Basin (Eastern Paratethys, Romania), chronologically constrained by biostratigraphic field observations and well data. They reveal significant sea level changes during the middle Pontian that are coeval with the MSC. These changes were most likely transmitted to the western Dacic Basin from the downstream Black Sea and controlled by the sill height of the interconnecting gateway. During the middle Pontian lowstand of the western Dacian Basin, sedimentation continued in a remnant ∼300 m deep lake with a positive water balance. Our observations show that the evolution of semi-isolated sedimentary basins is strongly dependent on the communication with other depositional realms through its control on base level and sediment supply.  相似文献   

17.
18.
Distance correlations of Late Tortonian–Messinian littoral carbonate complexes are proposed from the study of eight platforms in the western and central Mediterranean. Correlations are based on the identification of two major biological sedimentary cycles and of two index surfaces. Surface A is a maximum flooding surface during cycle 1 at around 6.7 Ma. Surface B is a regional marine planation surface at around 5.95 Ma, at the base of cycle 2 (Terminal Carbonate Complex). A general sedimentary model is proposed for the 7–5.6-Ma time-span. The boundary between cycles 1 and 2 is coincident with the onset of the Messinian Salinity Crisis, and appears to be related to major environmental–paleo-oceanographic changes in the Mediterranean, rather than to a major sea-level drop or to climatic change.  相似文献   

19.
The Messinian gypsum of Sorbas is intensively karstified, with hundreds of dolines and numerous, highly unusual exo- and endokarstic forms. Amongst these the tumuli are especially spectacular, as are the large caverns, adorned with numerous speleothems, some of which have not been described anywhere else in the World. The extraction of the gypsum has impacted practically all the elements of the environment (landscape, water, soil, subsoil, flora, fauna, etc.) and, in particular, all of the karstic forms. In addition to endangering the caves and the natural treasures that they contain, it affects the surface waters, markedly modifying the hydrographic network. Groundwaters, which now occur in the bottom of a quarry, are also affected.  相似文献   

20.
With many inhabited islands only at about 1 m above mean sea level, the Maldives is among the nations most threatened by coastal flooding and sea level rise. However, the understanding of recent coastal flood events in the Maldives is limited and is important to understanding future flood threats. This paper assesses (1) the sea level and wave climate of the Maldives, (2) the sea level and wave conditions during recent coastal flood events, and (3) the implications for flood management and future research. The analysis uses observed still water levels (1987–2015) and hindcast wave conditions (1979–2015). Two significant flood events on 10–13 April 1987 and 15–17 May 2007 are examined in detail. This shows that coastal flooding in the Maldives occurs due to multiple interacting sources. These include long-period (up to 20 s) energetic waves generated in the Southern Ocean combined with spring tides. Wave run-up (mainly wave set-up) appears an essential mechanism for a flood, but is currently poorly quantified. However, as sea levels continue to rise the conditions that produce a flood will occur more frequently, suggesting that flooding will become common in the Maldives. This analysis is a starting point for future research and highlights the need to continue research on flood sources, pathways and receptors, and plan adaptation measures. Priorities include monitoring of waves, sea levels and flood events, and a better understanding of set-up (and other shallow water processes over reefs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号