首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A scientific collaboration between TÜB?TAK National Observatory (Turkey), Kazan State University (Russia) and Nikolaev Astronomical Observatory (Ukraine) involves observations of minor planets and near-Earth asteroids (NEAs) with the 1.5 m Russian-Turkish telescope (RTT150). Regular observations of selected asteroids in the range of 11-18 magnitudes began in 2004 with the view of determining masses of selected asteroids, improving the orbits of the NEAs, and studying physical characteristics of selected asteroids from photometric observations. More than 3000 positions of 53 selected asteroids and 11 NEAs have been obtained with an internal error in the range of 30-300 mas for a single determination. Photometric reductions of more than 4000 CCD frames are in progress. Masses of 21 asteroids were estimated through dynamical method using the ground-based optical observations, mainly from the RTT150 and Minor Planet Center. A comparison of the observational results from the RTT150 in 2004-2005 with observations of the same objects at other observatories allows us to conclude that RTT150 can be used for ground-based support in astrometry for the space mission GAIA.  相似文献   

2.
The results of a new reduction of 1545 photographic observations of 14 selected asteroids obtained with the Normal Astrograph of the Pulkovo Observatory from 1948 to 1990 are presented. Photographic plates stored in the archive of the observatory were digitized with a general purpose flatbed scanner using a specially developed technique. The accuracy of the reduction of photographic plates is measured. The UCAC3 catalogue has been used as a reference. Residual differences between coordinates of stars in the reference catalogue are used to analyze and tacking into account obtained instrumental systematic errors. Equatorial coordinates of 1378 individual observations of target asteroids are obtained. They are compared with the results of the reduction of the material made earlier. Among the objects of the background, positions of 1475 stars with large proper motions from the LSPM catalogue are measured.  相似文献   

3.
After a CCD image of the four Galilean satellites of Jupiter is obtained by a long focal length telescope, we can compare the theoretical positions of these satellites with their pixel positions so as to obtain the calibration parameters of the CCD field of view. In theory, when two of the four satellites have small enough separation, their relative positional measurement will have a good accuracy since the error existing in the solved calibration parameters has a direct proportional effect on the separation of the two satellites. The 347 CCD images taken by 1-m long focal length telescope at Yunnan Observatory in 2002-2005 are used to perform the experimental test. After we improve the centroid algorithm for the satellites and our former halo-removal technique, the results show that the positional measurement of two small-separation satellites has an external precision as good as 0.01-0.03 arcsec. This precision has comparability as that from rarely occurring mutual events of the Galilean satellites. This experiment confirms the finding of the “precision premium” firstly presented by Pascu [1994. An appraisal of the USNO program of photographic astrometry of bright planetary satellites. In: Morrison, L.V., Gilmore, G.F., (Eds.), Galatic and Solar System Optical Astrometry, pp. 304-311] using photographic observations. We believe that this type of observations, besides mutual event observations, might also be used to improve our knowledge of the orbital motions of the Galilean satellites because of its much more opportunities.  相似文献   

4.
Astrometric and photometric observations of major planets, their satellites and asteroids have been made with the 26-in. refractor of the Pulkovo observatory during the period from 1995 to 2006. The CCD (ST6) and photographic observations were carried out. Accurate relative position of satellites of Jupiter and Saturn have been derived. The positions of Saturn have been calculated using the theoretically predicted coordinates of satellites relative to the planet without measurements of the photographic images of the planet. Also the observations of Hale-Bopp comet and Mercury transit have been made. The 26-in. refractor has been included into the international campaign PHEMU-2003: photometric CCD observations of mutual occultations and eclipses of Galilean satellites. The light curves of the events have been obtained and parameters of the events have been determined.  相似文献   

5.
The high velocity of the apparent motion of near Earth asteroids (NEAs) is the main problem in their observation. This problem is solved at the Research Institute Nikolaev Astronomical Observatory (RI NAO) with a combined observation method using the time delay and integration mode of a CCD array and a camera rotator. A total of 1317 positions of 74 NEAs were obtained at RI NAO in 2008–2012. All the observations were made using the combined-observation method. The error in observations made at RI NAO is compared with the results that were obtained at other observatories in this work.  相似文献   

6.
We attempt to throw light upon the poorly known astronomical dynasty of Knorre and describe its contribution to astronomy. The founder of the dynasty, Ernst Christoph Friedrich Knorre (1759–1810), was born in Germany in 1759, and since 1802 he was a Professor of Mathematics at the Tartu University, and observer at its temporary observatory. He determined the first coordinates of Tartu by stellar observations. Karl Friedrich Knorre (1801–1883) was the first director of the Naval Observatory in Nikolaev since the age of 20, provided the Black Sea navy with accurate time and charts, trained mariners in astronomical navigation, and certified navigation equipment. He compiled star maps and catalogues, and determined positions of comets and planets. He also participated in Bessel's project of the Academic Star Charts, and was responsible for Hora 4, published by the Berlin Academy of Sciences. This sheet permitted to discover two minor planets, Astraea and Flora. Viktor Knorre (1840–1919) was born in Nikolaev. In 1862 he left for Berlin to study astronomy. After defending his thesis for a doctor's degree, he went to Pulkovo as an astronomical calculator in 1867. Since 1873 Viktor worked as an observer of the Berlin Observatory Fraunhofer refractor. His main research focussed on minor planets, comets and binary stars. He discovered the minor planets Koronis, Oenone, Hypatia and Penthesilea. Viktor Knorre also worked on improving astronomical instrumentation, e.g. the Knorre & Heele equatorial telescope mounting (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
D. Polishook  N. Brosch 《Icarus》2009,199(2):319-332
Photometry results of 32 asteroids are reported from only seven observing nights on only seven fields, consisting of 34.11 cumulative hours of observations. The data were obtained with a wide-field CCD (40.5×27.3) mounted on a small, 46-cm telescope at the Wise Observatory. The fields are located within ±1.5° from the ecliptic plane and include a region within the main asteroid belt. The observed fields show a projected density of ∼23.7 asteroids per square degree to the limit of our observations. 13 of the lightcurves were successfully analyzed to derive the asteroids' spin periods. These range from 2.37 up to 20.2 h with a median value of 3.7 h. 11 of these objects have diameters in order of two kilometers and less, a size range that until recently has not been photometrically studied. The results obtained during this short observing run emphasize the efficiency of wide-field CCD photometry of asteroids, which is necessary to improve spin statistics and understand spin evolution processes. We added our derived spin periods to data from the literature and compared the spin rate distributions of small main belt asteroids (5>D>0.15 km) with that of bigger asteroids and of similar-sized NEAs. We found that the small MBAs do not show the clear Maxwellian-shaped distribution as large asteroids do; rather they have a spin rate distribution similar to that of NEAs. This implies that non-Maxwellian spin rate distribution is controlled by the asteroids' sizes rather than their locations.  相似文献   

8.
We represent the publication of photographic observations of some minor planets, made at the University Observatory Siegen.  相似文献   

9.
The ESA astrometric mission Gaia, due for a launch in late 2011, will observe a huge number of asteroids (∼350,000 brighter than V<20) with an unprecedented positional precision (at the sub-milliarcsecond level). This precision will play an important role for the mass determination of about hundred minor planets with a relative precision better than 50%. Presently, due primarily to their perturbations on Mars, the uncertainty in the masses of the largest asteroids is the limiting factor in the accuracy of the solar system ephemerides. Besides, such high precision astrometry will enable to derive direct measurements of the masses of the largest asteroids which are of utmost significance for the knowledge of their physical properties. The method for computing the masses is based on the analysis of orbital perturbations during close encounters between massive asteroids (perturbers) and several smaller minor planets (targets). From given criteria of close approaches selection, we give the list of asteroids for which the mass can be determined, and the expected precision of these masses at mission completion. We next study the possible contribution of the ground-based observations for the mass determination in some special observation cases of close approaches.  相似文献   

10.
In 2000, the last international program of photographic observations of selected asteroids aimed at the determination of the mutual orientation of the dynamic and stellar coordinate systems came to an end. The Institute of Applied Astronomy of the Russian Academy of Sciences collected more than 25 000 observations for 15 asteroids spanning from 1949 through 1995. These observations were reduced to the reference frame of the Hipparcos catalog using dependencies published along with observations. The accuracy of observations of selected asteroids was 0.30 arcsec, which is comparable to that of modern CCD observations of minor planets. The observations are available at ftp://quasar.ipa.nw.ru/pub/SMP. An important advantage of these observations is that they are already reduced to the reference frame of a single catalog. Our criteria for the quality of the reduction methods and the accuracy of the observations are based on estimating the parameters of the orientation of the reference frames of the PPM and Hipparcos catalogs with respect to DE200/LE200. The most reliable results are those obtained when reducing old optical observations along with modern ground-based and space-borne observations.  相似文献   

11.
The U.S. Naval Observatory has begun a program of ephemeris improvement and reference frame determination from the main belt asteroids. The program is, currently, starting out with a limited set of observations of the larger asteroids to determine the equator and equinox corrections for the USNO W1J00 transit circle observations catalog, and, if possible, improve the orbits of these asteroids based on this limited set of observations. For this project, transit circle observations of the Sun and the planets Mercury through Jupiter, are also being used to determine the equator, equinox, and ephemeris corrections, the next goal is to improve the orbits of the larger asteroids in the optical reference frame using observation series that cover a much longer period of time. This will allow the exploration of the differences between the dynamical reference frame based on radar observations of main belt asteroids and its relation with the optical reference frame. Other goals include the exploration of the mass distribution in the main asteroid belt from high precision observations, and the effect of this mass on the ephemerides of the major planets.  相似文献   

12.
The telescope SBG (D = 0.42 m, F = 0.76 m) at the Kourovka Astronomical Observatory of the Ural Federal University has undergone an upgrade in 2005–2006. A CCD camera (Apogee Alta U32) and a new drive system were installed, and a new system for telescope and observation control was implemented. This upgrade required verifying the astrometric quality of the telescope. The data processing approaches tested when searching for the optimum CCD image processing technique combined TYCHO2 and UCAC2 catalogues with various reduction models and methods for choosing reference stars. Lorentzian and Moffat profiles were used in the measurement of pixel coordinates. It was demonstrated that the accuracy of SBG observations of main-belt asteroids with precisely determined orbits depends on their brightness and varies from 0.06” (11.5 m ) to 0.4” (18.5 m ). Regular SBG observations of comets and asteroids (mostly near-Earth and potentially hazardous ones) have been performed since 2007. Coordinates of 8515 positions of 720 asteroids and more than 1000 positions of 40 comets were obtained. The RMS deviations of observed coordinates from their calculated values are typically smaller than 1”: the average deviations for asteroids are 0.33” (in right ascension) and 0.34” (in declination); the corresponding values for comets are 0.37” (in α) and 0.38” (in δ). The results of observations are sent to the Minor Planet Center and are used to determine orbits more accurately and solve other fundamental and applied problems.  相似文献   

13.
This paper presents a new method to determine precisely the barycentric positions of the outer planets(Saturn - Neptune)by optical observations. It requires the CCD observations from a long focal distance telescope which is used to observe a planet and its satellites and ones from a meridian circle when it works in a CCD drift scanning manner. The key part of the method is tested by the observations with 1 meter telescope of Yunnan Observatory. The result shows that the new method is feasible to carry out.  相似文献   

14.
The latest version of the planetary part of the numerical ephemerides EPM (Ephemerides of Planets and the Moon) developed at the Institute of Applied Astronomy of the Russian Academy of Sciences is presented. The ephemerides of planets and the Moon were constructed by numerical integration in the post-Newtonian metric over a 140-year interval (from 1880 to 2020). The dynamical model of EPM2004 ephemerides includes the mutual perturbations from major planets and the Moon computed in terms of General Relativity with allowance for effects due to lunar physical libration, perturbations from 301 big asteroids, and dynamic perturbations due to the solar oblateness and the massive asteroid ring with uniform mass distribution in the plane of the ecliptic. The EPM2004 ephemerides resulted from a least-squares adjustment to more than 317000 position observations (1913–2003) of various types, including radiometric measurements of planets and spacecraft, CCD astrometric observations of the outer planets and their satellites, and meridian and photographic observations. The high-precision ephemerides constructed made it possible to determine, from modern radiometric measurements, a wide range of astrometric constants, including the astronomical unit AU = (149597870.6960 ± 0.0001) km, parameters of the rotation of Mars, the masses of the biggest asteroids, the solar quadrupole moment J 2 = (1.9 ± 0.3) × 10−7, and the parameters of the PPN formalism β and γ. Also given is a brief summary of the available state-of-the-art ephemerides with the same precision: various versions of EPM and DE ephemerides from the Jet Propulsion Laboratory (JPL) (USA) and the recent versions of these ephemerides—EPM2004 and DE410—are compared. EPM2004 ephemerides are available via FTP at ftp://qua-sar.ipa.nw.ru/incoming/EPM2004.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 3, 2005, pp. 202–213.Original Russian Text Copyright © 2005 by Pitjeva.  相似文献   

15.
The weak thermal emission from the largest minor planets can be detected and measured at all points around their orbits at microwave frequencies using the Very Large Array (VLA). Position determinations of astrometric quality have been obtained, and flux measurements have provided size estimates. When enough precise positional observations have been accumulated, the orbits of the minor planets and the Earth can be determined. This will allow the equinox to be located within the radio reference frame, providing a truly fundamental coordinate system for radio source positions. It will also provide a means of relating the optical and radio (quasar) coordinate systems.The National Radio Astronomy Observatory is operated by Associated Universities, Incorporated, under contract with the National Science Foundation.  相似文献   

16.
In the plate collection of the Harvard College Observatory, we have obtained 528 photographic magnitude estimates for the recently discovered long-period classical Cepheid ASAS 101538-5933.1 (P = 51.4 days). Together with the published photoelectric and CCD observations, our data have allowed us to construct an O-C diagram spanning a time interval of 120 years. The O-C diagram has the shape of a parabola, which has made it possible to determine for the first time the quadratic light elements and to calculate the rate of evolutionary increase in the period, dP/dt = 51.8 (±4.8) s yr−1 or $ \dot P $ \dot P /P = 7.3 (±0.7) s, in agreement with the results of theoretical calculations for the third crossing of the instability strip. The available data reduced by the method of Eddington and Plakidis reveal small random period fluctuations that do not distort the evolutionary trend in the O-C residuals.  相似文献   

17.
The angular diameter of minor planets compared with best observation conditions of about one arcsec (seeing) at ground-based observatories, though situated at high sea levels with best climate conditions, usually is too small to be resolved for surface studies or diameter determinations with direct photographic or similar imaging methods.Nevertheless the rough geometry and/or small scale structures on the asteroid's surface can be studied with light-curve observations using high precision photoelectric photometry and the fact that the rotation of an asteroid during a spin period is now determined for slightly more than 200 minor planets.On only a few selected asteroids (63 Ausonia, 88 Thisbe, 92 Undina, 110 Lydia, 118 Peitho, 128 Nemesis, 139 Juewa, 337 Devosa and 599 Luisa) do we show, from details detected in the light-curves, how observations of this type were carried out successfully. From the small scale features we get the rough linear extensions on the asteroid surface from differences in magnitude and time. Such observations will be more useful and important in future with respect to an optimum selection of objects for a possible direct asteroid spacecraft mission.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.Visiting Astronomer, Kitt Peak National Observatory, USA, Operated by the Association of Universities for Research in Astronomy Inc., under contract with the National Science Foundation. A part of the observations was carried out at the Observatoire de Haute Provence (OHP), France.  相似文献   

18.
The ephemerides of satellites of major planets are needed in planning spacecraft missions both for studying the satellites themselves and for navigational support during the flights of spacecraft in the vicinity of planets. In addition, accurate numerical theories of motion of the natural satellites of major planets make it possible to increase the accuracy of the ephemerides of their central planets based on positional (photographic and CCD) observations of the satellites. Numerical theories of Neptune’s satellites, Triton and Nereid, constructed within the framework of the ERA software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences are presented.  相似文献   

19.
A summary is given about the minor planet survey performed in 1988 on Tautenburg Schmidt plates. There were discovered 386 asteroids and 1218 positions were calculated for them. These are 87 numbered objects and 299 asteroids with provisional designations, 252 of them have new designations. Tautenburg observations contributed to 40 planets numbered in the period of this report, including eight discovered in Tautenburg.  相似文献   

20.
An overview of the minor planet search performed in the period 1984–1990 at Brorfelde Observatory is presented. All basic information about the observations is given but the positions are not presented because they are already published in Minor Planet Circulars. 1973 positions have been measured on 413 plates. 303 positions belong to unknown minor planets. At the end of 1992, 42 of these are numbered, having got enough observations to calculate a reliable orbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号