首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H2O, CO and CO2 ices are condensed on carbonaceous and silicate dust grains in dense interstellar clouds and circumstellar environments. The presence of these ices is inferred by analysing their infrared (IR) spectra. The upcoming Herschel space observatory (HERSCHEL) and ground-based astronomy project (ALMA) will provide new spectral data in the unexplored far infrared (FIR) and sub-millimetre range. In our laboratory we are developing instrumentation to study ices at IR region. One of the key components of our laboratory is a silicon composite bolometer in our IFS. This detector allows us to obtain spectra with a sensitivity much greater than that obtained with a standard deuterated triglycine sulphate (DTGS) detector working at room temperature and under vacuum conditions. We plan to collect mid infrared (MIR) and FIR spectra of simple ices and their mixtures and compare these with observational data. It is also planned to do a systematic laboratory study of the effects that ultraviolet (UV) photolysis and thermal annealing have on the ice band profiles and their structure.  相似文献   

2.
Identification of astronomical dust composition rests on comparison of Infrared (IR) spectra with standard laboratory spectra; frequently, however, a single mineralogical composition is assumed for spectral matching. Advances in laboratory instrumentation have enabled very precise IR spectra to be measured on single grains and zones within grains; with a more complete set of spectral data for planetary dust, better compositional matches will be achieved for astronomical dust. We have compared several FT-IR spectroscopy techniques (open path transmission spectroscopy and diffuse reflectance spectroscopy of powders; microspectroscopy of single grains and powders and ATR spectroscopy of thin sections) to determine their utility for the direct measurement of the mid-IR spectra of small amounts of extraterrestrial grains. We have focussed our investigation on the spectra of the olivine series of silicates, (Mg,Fe)2SiO4, a species frequently identified as one of the major constituents of interstellar dust. The positions of three characteristic SiO4 stretching bands at ∼10.4, 11.3 and 12 μm were measured for comparison of the techniques. All methods gave satisfactory results, although care must be taken to guard against artefacts from sample thickness and orientation effects. Single grains hand-picked from meteorites can be analysed, but results are inaccurate if the grain size is too large (>1-10 μm). Spectra for single grains also show variations that arise from sample orientation effects. Once the analytical artefacts are taken into account, we found that measurement of powder with a diamond compression cell is best suited for the analysis of small amounts of materials.  相似文献   

3.
Optical constants in a broad temperature and wavelength range are important input parameters in radiative transfer models used in studies of planetary atmospheres. In the laboratory, the refractive index values of ices at the HeNe laser wavelength (632.8 nm) are often used to monitor the growth rate and thickness of ice films. In this report we present laboratory measurements determining the refractive index at 632.8 nm of ammonia and hydrocarbon ices in the temperature range 80-100 K. Thin ice films are vapor-deposited on a cryogenically cooled mirror located inside a high-vacuum apparatus. The real component of the refractive index of these ice films is determined by a two-angle interferometric technique. Optical modeling calculations of the transmittance and reflectance through the thin ice films assist in the interpretation of the experimental results. We discuss our results and compare them with other measurements available in the literature. The results reported here are relevant to the spectroscopy of icy objects in the solar system; they are needed to perform laboratory characterization of ices, derive optical constants, and model spectra.  相似文献   

4.
Jeremy Bailey  Linda Ahlsved 《Icarus》2011,213(1):218-232
We have obtained spatially resolved spectra of Titan in the near-infrared J, H and K bands at a resolving power of ∼5000 using the near-infrared integral field spectrometer (NIFS) on the Gemini North 8 m telescope. Using recent data from the Cassini/Huygens mission on the atmospheric composition and surface and aerosol properties, we develop a multiple-scattering radiative transfer model for the Titan atmosphere. The Titan spectrum at these wavelengths is dominated by absorption due to methane with a series of strong absorption band systems separated by window regions where the surface of Titan can be seen. We use a line-by-line approach to derive the methane absorption coefficients. The methane spectrum is only accurately represented in standard line lists down to ∼2.1 μm. However, by making use of recent laboratory data and modeling of the methane spectrum we are able to construct a new line list that can be used down to 1.3 μm. The new line list allows us to generate spectra that are a good match to the observations at all wavelengths longer than 1.3 μm and allow us to model regions, such as the 1.55 μm window that could not be studied usefully with previous line lists such as HITRAN 2008. We point out the importance of the far-wing line shape of strong methane lines in determining the shape of the methane windows. Line shapes with Lorentzian, and sub-Lorentzian regions are needed to match the shape of the windows, but different shape parameters are needed for the 1.55 μm and 2 μm windows. After the methane lines are modeled our observations are sensitive to additional absorptions, and we use the data in the 1.55 μm region to determine a D/H ratio of 1.77 ± 0.20 × 10−4, and a CO mixing ratio of 50 ± 11 ppmv. In the 2 μm window we detect absorption features that can be identified with the ν5 + 3ν6 and 2ν3 + 2ν6 bands of CH3D.  相似文献   

5.
Recently, an unidentified 3.3-3.4 μm feature found in the solar occultation spectra of the atmosphere of Titan observed by Cassini/VIMS was tentatively attributed to the C-H stretching mode of aliphatic hydrocarbon chains attached to large organic molecules, but without properly extracting the feature from adjacent influences of strong CH4 and weak C2H6 absorptions (Bellucci et al., 2009). In this work, we retrieve the detailed spectral feature using a radiative transfer program including absorption and fluorescent emission of both molecules, as well as absorption and scattering by haze particles. The spectral features of the haze retrieved from the VIMS data at various altitudes are similar to each other, indicating relatively uniform spectral properties of the haze with altitude. However, slight deviations observed near 127 km and above 300 km suggest inhomogeneity at these altitudes. We find that the positions of the major spectral peaks occur at 3.33-3.37 μm, which are somewhat different from the typical 3.3 μm aromatic or 3.4 μm aliphatic C-H stretches usually seen in the spectra of dust particles of the interstellar medium and comets. The peaks, however, coincide with those of the solid state spectra of C2H6, CH4, and CH3CN; and a broad shoulder from 3.37 to 3.50 μm coincides with those of C5H12 and C6H12 as well as those of typical aliphatic C-H stretches. This result combined with high-altitude (∼1000 km) haze formation process recently reported by Waite et al. (2007) opens a new question on the chemical composition of the haze particles. We discuss the possibility that the 3 μm feature may be due to the solid state absorption bands of these molecules (or some other molecules) and we advocate additional laboratory measurements for the ices of hydrocarbon and nitrogen-bearing molecules present in Titan's atmosphere for the identification of this 3 μm feature.  相似文献   

6.
Lucy F. Lim  Joshua P. Emery 《Icarus》2011,213(2):510-523
We present the thermal infrared (5-35 μm) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph (“IRS”; Houck, J.R. et al. [2004]. Astrophys. J. Suppl. 154, 18-24) together with new groundbased lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 ± 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (HV) at that rotational phase to be 12.58 ± 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 ± 0.4 km with a visible albedo pV = 0.142 ± 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 ± 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 ±  2.8 K and beaming parameter η = 1.16 ± 0.05. Thermophysical modeling places a lower limit of on the thermal inertia of the asteroid’s surface layer (if the surface is very smooth) but more likely values fall between 30 and depending on the sense of rotation.The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 μm reststrahlen band, the 15-16.5 μm Si-O-Si stretching region, and the 16-25 μm reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range Wo2±1En74±2Fs24±1. Spectral deconvolution of the 9-12 μm reststrahlen features indicates that up to ≈20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non-cumulate eucrite as the major component on the surface of 956 Elisa, although cumulate eucrite material may be present at abundances lower than that of the diogenite component.Analysis of new near-IR spectra of 956 Elisa with the Modified Gaussian Model (MGM; Sunshine, J.M., Pieters, C.M., Pratt, S.F. [1990]. J. Geophys. Res. 95 (May), 6955-6966) results in two pyroxene compositions: 75% magnesian low-Ca pyroxene and 25% high-Ca pyroxene. High-Ca pyroxene is not evident in the mid-IR data, but may belong to a component that is underrepresented in the mid-IR spectrum either because of its spatial distribution on the asteroid or because of its particle size. High-Ca pyroxenes that occur as exsolution lamellae may also be more evident spectrally in the NIR than in the mid-IR. In any case, we find that the mid-IR spectrum of 956 Elisa is dominated by emission from material of diogenite-like composition, which has very rarely been observed among asteroids.  相似文献   

7.
Ices in the solar system are observed on the surface of planets, satellites, comets and asteroids where they are continuously subordinate at particle fluxes (cosmic ions, solar wind and charged particles caught in the magnetosphere of the planets) that deeply modify their physical and structural properties. Each incoming ion destroys molecular bonds producing fragments that, by recombination, form new molecules also different from the original ones. Moreover, if the incoming ion is reactive (H+, On+, Sn+, etc.), it can concur to the formation of new molecules.Those effects can be studied by laboratory experiments where, with some limitation, it is possible to reproduce the astrophysical environments of planetary ices.In this work, we describe some experiments of 15-100 keV H+ and He+ implantation in pure sulfur dioxide (SO2) at 16 and 80 K and carbon dioxide (CO2) at 16 K ices aimed to search for the formation of new molecules. Among other results we confirm that carbonic acid (H2CO3) is formed after H-implantation in CO2, vice versa H-implantation in SO2 at both temperatures does not produce measurable quantity of sulfurous acid (H2SO3). The results are discussed in the light of their relevance to the chemistry of some solar system objects, particularly of Io, the innermost of Jupiter's Galilean satellites, that exhibits a surface very rich in frost SO2 and it is continuously bombarded with H+ ions caught in Jupiter's magnetosphere.  相似文献   

8.
Laboratory spectra of methane-nitrogen mixtures have been recorded in the near-infrared range (1.0-1.65 μm) in conditions similar to Titan's near surface, to facilitate the interpretation of the DISR/DLIS (DISR—Descent Imager/Spectral Radiometer) spectra taken during the last phase of the descent of the Huygens Probe, when the surface was illuminated by a surface-science lamp. We used a 0.03 cm−1 spectral resolution, adequate to resolve the lines at high pressure (pN2∼1.5 bar). By comparing the laboratory spectra with synthetic calculations in the well-studied ν2+2ν3 band (7515-7620 cm−1), we determine a methane absorption column density of 178±20 cm atm and a temperature of 118±10 K in our experiment. From this, we derive the methane absorption coefficients over 1.0-1.65 μm with a 0.03 cm−1 sampling, allowing for the extrapolation of the results to any other methane column density under the relevant pressure and temperature conditions. We then revisit the calibration and analysis of the Titan “lamp-on” DLIS spectra. We infer a 5.1±0.8% methane-mixing ratio in the first 25 m of Titan's atmosphere. The CH4 mixing ratio measured 90 s after landing from a distance of 45 cm is found to be 0.92±0.25 times this value, thus showing no post-landing outgassing of methane in excess of ∼20%. Finally, we determine the surface reflectivity as seen between 25 m and 45 cm and find that the 1500 nm absorption band is deeper in the post-landing spectrum as compared to pre-landing.  相似文献   

9.
10.
We present absorption cross sections of propane (C3H8) at temperatures from 145 K to 297 K in the 690–1550 cm−1 region. Pure and N2-broadened spectra were measured at pressures from 3 Torr to 742 Torr using a Bruker IFS125 FT-IR spectrometer at JPL. The gas absorption cell, developed at Connecticut College, was cooled by a closed-cycle helium refrigerator. The cross sections were measured and compiled for individual spectra recorded at various experimental conditions covering the planetary atmosphere and Titan. In addition to the cross sections, a propane pseudoline list with a frequency grid of 0.005 cm−1, was fitted to the 34 laboratory spectra. Line intensities and lower state energies were retrieved for each line, assuming a constant width. Validation tests showed that the pseudoline list reproduces discrete absorption features and continuum, the latter contributed by numerous weak and hot band features, in most of the observed spectra within 3%. Based on the pseudoline list, the total intensity in the 690–1550 cm−1 region was determined to be 52.93 (±3%) × 10−19 cm−1/(molecule cm−2) at 296 K; this value is within 3% of the average from four earlier studies. Finally, the merit of the pseudoline approach is addressed for heavy polyatomic molecules in support of spectroscopic observation of atmospheres of Titan and other planets. The cold cross sections will be submitted to the HITRAN database (hitran.harvard.edu), and the list of C3H8 pseudolines will be available from a MK-IV website of JPL (http://mark4sun.jpl.nasa.gov/data/spec/Pseudo).  相似文献   

11.
New laboratory spectra of crystalline and amorphous diacetylene ice have been recorded in the range of 7000-500 cm−1 (1.4-20 μm) to aid in the identification of solid diacetylene on Saturn's moon Titan. We have established that amorphous diacetylene ice is stable only at temperatures less than 70±1 K. With respect to observations on Titan, the best approach would be to utilize future space-based telescopes to search for the ν4 (3277/3271 cm−1) in absorption against the reflected light from the sun and the slightly weaker ν8 absorption bands (676/661 cm−1) in absorption against the continuum emission.  相似文献   

12.
We study radiation-induced amorphization of crystalline ice, analyzing the results of three decades of experiments with a variety of projectiles, irradiation energy, and ice temperature, finding a similar trend of increasing resistance of amorphization with temperature and inconsistencies in results from different laboratories. We discuss the temperature dependence of amorphization in terms of the ‘thermal spike’ model. We then discuss the common use of the 1.65 μm infrared absorption band of water as a measure of degree of crystallinity, an increasingly common procedure to analyze remote sensing data of astronomical icy bodies. The discussion is based on new, high quality near-infrared reflectance absorption spectra measured between 1.4 and 2.2 μm for amorphous and crystalline ices irradiated with 225 keV protons at 80 K. We found that, after irradiation with 1015 protons cm−2, crystalline ice films thinner than the ion range become fully amorphous, and that the infrared absorption spectra show no significant changes upon further irradiation. The complete amorphization suggests that crystalline ice observed in the outer Solar System, including trans-neptunian objects, may results from heat from internal sources or from the impact of icy meteorites or comets.  相似文献   

13.
An analysis of radio and FIR emission in over 1500IRAS selected galaxies produces a good linear correlationbetween radio and FIR luminosity, indicating that star formationin normal field galaxies dominates the infrared luminosityin the local volume. Galaxies with clear radio-excess (definedas having at least5 times larger radio flux over expected from FIR) are identified as hosting a radio AGN, and they account for onlyabout 1% of the whole sample. This fraction increases to 10% among themore luminous galaxies with L 1.4GHz 1023 W Hz-1 (equivalently L 60m 1011 L), however. The characteristic mid-IR excess of a Seyfert nucleus is ubiquitously present amongthe radio-excess objects, suggesting that mid-IR excess isa robust tracer of an AGN despite the high mid-IR opacity.We conclude that about 30% of the luminous infrared galaxies(L 60m 1011 L) host an AGN based on themid-IR excess, and about 40% of the mid-IR excess AGNs alsohost a radio AGN. A VLA imaging survey of a distance limited sample of IR luminousgalaxies has revealed the presence of 100 kpc scale giant radioplumes in 3 out of 9 cases (Mrk 231, Mrk 273, NGC 6240). Theirlarge spatial extent, energetics, and presence of a powerful AGN in each case suggests that an AGN is the power source. Such plumesare not detected in other ultraluminous infrared galaxies which lack clear evidence for an AGN, such as Arp 220.  相似文献   

14.
E. Dartois 《Icarus》2011,212(2):950-956
Carbon monoxide is the second most abundant molecule after H2 in the molecular universe, and as such an abundant constituent of interstellar and Solar System ices. To trace the possibility of this molecule to be found in a clathrate hydrate inclusion compound, its pure phase FTIR spectrum is investigated. We confirm the formation of a type I clathrate structure whereas simple guest size estimates would favour a type II clathrate hydrate, revealing interactions of this molecule with its water network during clathrate formation. The observed cage vibrational downshift with respect to pure CO ice is within 5 cm−1. The temperature dependent wavenumber separation between the two enclathrated CO vibrational transitions in the two distinct type I clathrate cages is less than a wavenumber below 140 K, implying that the spectral simplification for detailed spectroscopic analysis of the individual profiles is a difficult task. The dynamics of the CO molecules in its cage change considerably from 5 K to 140 K. At temperatures above 30 K, the molecule is extremely mobile in the cages, as revealed by the infrared profile, significantly different from CO entrapped in water ice and different from observed profiles in astrophysical objects.  相似文献   

15.
Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 μm (2343.3 cm−1), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 * nH2O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule’s nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus, Hyperion, and Dione is shifted to shorter wavelengths (typically ∼4.255 μm (∼2350.2 cm−1)) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe’s CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior.The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 μm, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector response profiles with a deep atmospheric CO2 absorption profile, producing distorted detector profile shapes and shifted central positions. In a laboratory blackbody spectrum used for radiance calibration, close examination of the CO2 absorption profile shows a similar deviation from that expected from a model. These modeled effects appear to be sufficient to explain the distortion in the existing wavelength calibration now in use. A modification to the wavelength calibration for 13 adjacent bands is provided. The affected channels span about 0.2 μm centered on 4.28 μm. The maximum wavelength change is about 10 nm toward longer wavelength. This adjustment has implications for interpretation of some of the spectral features observed in the affected wavelength interval, such as from CO2, as discussed in this paper.  相似文献   

16.
Mid- and far-infrared spectra from the Composite InfraRed Spectrometer (CIRS) have been used to determine volume mixing ratios of nitriles in Titan's atmosphere. HCN, HC3N, C2H2, and temperature were derived from 2.5 cm−1 spectral resolution mid-IR mapping sequences taken during three flybys, which provide almost complete global coverage of Titan for latitudes south of 60° N. Three 0.5 cm−1 spectral resolution far-IR observations were used to retrieve C2N2 and act as a check on the mid-IR results for HCN. Contribution functions peak at around 0.5-5 mbar for temperature and 0.1-10 mbar for the chemical species, well into the stratosphere. The retrieved mixing ratios of HCN, HC3N, and C2N2 show a marked increase in abundance towards the north, whereas C2H2 remains relatively constant. Variations with longitude were much smaller and are consistent with high zonal wind speeds. For 90°-20° S the retrieved HCN abundance is fairly constant with a volume mixing ratio of around 1 × 10−7 at 3 mbar. More northerly latitudes indicate a steady increase, reaching around 4 × 10−7 at 60° N, where the data coverage stops. This variation is consistent with previous measurements and suggests subsidence over the northern (winter) pole at approximately 2 × 10−4 m s−1. HC3N displays a very sharp increase towards the north pole, where it has a mixing ratio of around 4 × 10−8 at 60° N at the 0.1-mbar level. The difference in gradient for the HCN and HC3N latitude variations can be explained by HC3N's much shorter photochemical lifetime, which prevents it from mixing with air at lower latitude. It is also consistent with a polar vortex which inhibits mixing of volatile rich air inside the vortex with that at lower latitudes. Only one observation was far enough north to detect significant amounts of C2N2, giving a value of around 9 × 10−10 at 50° N at the 3-mbar level.  相似文献   

17.
We obtained time-resolved, near-infrared spectra of Io during the 60-90 min following its reappearance from eclipse by Jupiter on five occasions in 2004. The purpose was to search for spectral changes, particularly in the well-known SO2 frost absorption bands, that would indicate surface-atmosphere exchange of gaseous SO2 induced by temperature changes during eclipse. These observations were a follow-on to eclipse spectroscopy observations in which Bellucci et al. [Bellucci et al., 2004. Icarus 172, 141-148] reported significant changes in the strengths of two strong SO2 bands in data acquired with the VIMS instrument aboard the Cassini spacecraft. One of the bands (4.07 μm [ν1 + ν3]) observed by Bellucci et al. is visible from ground-based observatories and is included in our data. We detected no changes in Io’s spectrum at any of the five observed events during the approximately 60-90 min during which spectra were obtained following Io’s emergence from Jupiter’s shadow. The areas of the three strongest SO2 bands in the region 3.5-4.15 μm were measured for each spectrum; the variation of the band areas with time does not exceed that which can be explained by the Io’s few degrees of axial rotation during the intervals of observation, and in no case does the change in band strength approach that seen in the Cassini VIMS data. Our data are of sufficient quality and resolution to show the weak 2.198 μm (4549.6 cm−1) 4ν1 band of SO2 frost on Io for what we believe is the first time. At one of the events (June 22, 2004), we began the acquisition of spectra ∼6 min before Io reappeared from Jupiter’s shadow, during which time it was detected through its own thermal emission. No SO2 bands were superimposed on the purely thermal spectrum on this occasion, suggesting that the upper limit to condensed SO2 in the vertical column above Io’s surface was ∼4 × 10−5 g cm−2.  相似文献   

18.
This report arises from an ongoing program to monitor Neptune’s largest moon Triton spectroscopically in the 0.8 to 2.4 μm range using IRTF/SpeX. Our objective is to search for changes on Triton’s surface as witnessed by changes in the infrared absorption bands of its surface ices N2,CH4,H2O, CO, and CO2. We have recorded infrared spectra of Triton on 53 nights over the ten apparitions from 2000 to 2009. The data generally confirm our previously reported diurnal spectral variations of the ice absorption bands (Grundy and Young, 2004). Nitrogen ice shows a large amplitude variation, with much stronger absorption on Triton’s Neptune-facing hemisphere. We present evidence for seasonal evolution of Triton’s N2 ice: the 2.15 μm absorption band appears to be diminishing, especially on the Neptune-facing hemisphere. Although it is mostly dissolved in N2 ice, Triton’s CH4 ice shows a very different longitudinal variation from the N2 ice, challenging assumptions of how the two ices behave. Unlike Triton’s CH4 ice, the CO ice does exhibit longitudinal variation very similar to the N2 ice, implying that CO and N2 condense and sublimate together, maintaining a consistent mixing ratio. Absorptions by H2O and CO2 ices show negligible variation as Triton rotates, implying very uniform and/or high latitude spatial distributions for those two non-volatile ices.  相似文献   

19.
D.J. Burke 《Icarus》2011,211(2):1082-1088
Remote infrared spectroscopic measurements have recently re-opened the possibility that water is present on the surface of the Moon. Analyses of infrared absorption spectra obtained by three independent space instruments have identified water and hydroxyl (-OH) absorption bands at ∼3 μm within the lunar surface. These reports are surprising since there are many mechanisms that can remove water but no clear mechanism for replenishment. One hypothesis, based on the spatial distribution of the -OH signal, is that water is formed by the interaction of the solar wind with silicates and other oxides in the lunar basalt. To test this hypothesis, we have performed a series of laboratory simulations that examine the effect of proton irradiation on two minerals: anorthite and ilmenite. Bi-directional infrared reflection absorption spectra do not show any discernable enhancement of infrared absorption in the 3 μm spectral region following 1 or 100 keV proton irradiation at fluences between 1016 and 1018 ions cm−2. In fact, the post-irradiation spectra are characterized by a decrease in the residual O-H band within both minerals. Similarly, secondary ion mass spectrometry shows a decrease rather than an increase of the water group ions following proton bombardment of ilmenite. The absence of significant formation of either -OH or H2O is ascribed to the preferential depletion of oxygen by sputtering during proton irradiation, which is confirmed by post-irradiation surface analysis using X-ray photoelectron spectroscopy measurements. Our results provide no evidence to support the formation of H2O in the lunar regolith via implantation of solar wind protons as a mechanism responsible for the significant O-H absorption in recent spacecraft data. We determine an upper limit for the production of surficial -OH on the lunar surface by solar wind irradiation to be 0.5% (absorption depth).  相似文献   

20.
Cassini VIMS detected carbon dioxide on the surface of Iapetus during its insertion orbit. We evaluated the CO2 distribution on Iapetus and determined that it is concentrated almost exclusively on Iapetus’ dark material. VIMS spectra show a 4.27-μm feature with an absorption depth of 24%, which, if it were in the form of free ice, requires a layer 31 nm thick. Extrapolating for all dark material on Iapetus, the total observable CO2 would be 2.3 × 108 kg.Previous studies note that free CO2 is unstable at 10 AU over geologic timescales. Carbon dioxide could, however, be stable if trapped or complexed, such as in inclusions or clathrates. While complexed CO2 has a lower thermal volatility, loss due to photodissociation by UV radiation and gravitational escape would occur at a rate of 2.6 × 107 kg year−1. Thus, Iapetus’ entire inventory of surface CO2 could be lost within a few decades.The high loss/destruction rate of CO2 requires an active source. We conducted experiments that generated CO2 by UV radiation of simulated icy regolith under Iapetus-like conditions. The simulated regolith was created by flash-freezing degassed water, crushing it into sub-millimeter sized particles, and then mixing it with isotopically labeled amorphous carbon (13C) dust. These samples were placed in a vacuum chamber and cooled to temperatures between 50 K and 160 K. The samples were irradiated with UV light, and the products were measured using a mass spectrometer, from which we measured 13CO2 production at a rate of 2.0 × 1012 mol s−1. Extrapolating to Iapetus and adjusting for the solar UV intensity and Iapetus’ surface area, we calculated that CO2 production for the entire surface would be 1.1 × 107 kg year−1, which is only a factor of two less than the loss rate. As such, UV photochemical generation of CO2 is a plausible source of the detected CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号