首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A global-mean model of coupled neutral and ion chemistry on Titan has been developed. Unlike the previous coupled models, the model involves ambipolar diffusion and escape of ions, hydrodynamic escape of light species, and calculates the H2 and CO densities near the surface that were assigned in some previous models. We tried to reduce the numbers of species and reactions in the model and remove all species and reactions that weakly affect the observed species. Hydrocarbon chemistry is extended to C12H10 for neutrals and C10H+11 for ions but does not include PAHs. The model involves 415 reactions of 83 neutrals and 33 ions, effects of magnetospheric electrons, protons, and cosmic rays. UV absorption by Titan's haze was calculated using the Huygens observations and a code for the aggregate particles. Hydrocarbon, nitrile, and ion chemistries are strongly coupled on Titan, and attempt to calculate them separately (e.g., in models of ionospheric composition) may result in significant error. The model densities of various species are typically in good agreement with the observations except vertical profiles in the stratosphere that are steeper than the CIRS limb data. (A model with eddy diffusion that facilitates fitting to the CIRS limb data is considered as well.) The CO densities are supported by the O+ flux from Saturn's magnetosphere. The ionosphere includes a peak at 80 km formed by the cosmic rays, steplike layers at 500-700 and 700-900 km and a peak at 1060 km (SZA = 60°). Nighttime densities of major ions agree with the INMS data. Ion chemistry dominates in the production of bicyclic aromatic hydrocarbons above 600 km. The model estimates of heavy positive and negative ions are in reasonable agreement with the Cassini results. The major haze production is in the reactions C6H + C4H2, C3N + C4H2, and condensation of hydrocarbons below 100 km. Overall, precipitation rate of the photochemical products is equal to 4-7 kg cm−2 Byr−1 (50-90 m Byr−1 while the global-mean depth of the organic sediments is ∼3 m). Escape rates of methane and hydrogen are 2.9 and 1.4 kg cm−2 Byr−1, respectively. The model does not support the low C/N ratio observed by the Huygens ACP in Titan's haze.  相似文献   

2.
A prominent feature of Titan's atmosphere is a thick haze region that acts as the end product of hydrocarbon and nitrile chemistry. Using a one-dimensional photochemical model, an investigation into the chemical mechanisms responsible for the formation of this haze region is conducted. The model derives profiles for Titan's atmospheric constituents that are consistent with observations. Included is an updated benzene profile that matches more closely with—recent ISO observations (Icarus 161 (2003) 383), replacing the profile given in the benzene study of Wilson et al. (J. Geophys. Res. 108 (2003) 5014). Using these profiles, pathways from polyynes, aromatics, and nitriles are considered, as well as possible copolymerization among the pathways. The model demonstrates that the growth of polycyclic aromatic hydrocarbons throughout the lower stratosphere plays an important role in furnishing the main haze layer, with nitriles playing a secondary role. The peak chemical production of haze layer ranges from 140 to 300 km peaking at an altitude of 220 km, with a production rate of 3.2×10−14 gcm−2 s−1. Possible mechanisms for polymerization and copolymerization and suggestions for further kinetic study are discussed, along with the implications for the distribution of haze in Titan's atmosphere.  相似文献   

3.
A one-dimensional composition model of Titan's upper atmosphere is constructed, coupling 36 neutral species and 47 ions. Energy inputs from the Sun and from Saturn's magnetosphere and updated temperature and eddy coefficient parameters are taken into account. A rotating technique at constant latitude and varying local-time is proposed to account for the diurnal variation of solar inputs. The contributions of photodissocation, neutral chemistry, ion-neutral chemistry, and electron recombination to neutral production are presented as a function of altitude and local time. Local time-dependent mixing ratio and density profiles are presented in the context of the TA and T5 Cassini data and are compared in detail to previous models. An independent and simplified ion and neutral scheme (19-species) is also proposed for future 3D-purposes. The model results demonstrate that a complete understanding of the chemistry of Titan's upper atmosphere requires an understanding of the coupled ion and neutral chemistry. In particular, the ionospheric chemistry makes significant contributions to production rates of several important neutral species.  相似文献   

4.
W.J. Borucki  R.C. Whitten  E. Barth 《Icarus》2006,181(2):527-544
The electrical conductivity and electrical charge on the aerosols in atmosphere of Titan are computed for altitudes between 0 and 400 km. Ionization of methane and nitrogen due to galactic cosmic rays (GCR) is important at night where these ions are converted to ion clusters such as CH+5CH4, C7H+7, C4H+7, and H4C7N+. The ubiquitous aerosols observed also play an important role in determining the charge distribution in the atmosphere. Because polycyclic aromatic hydrocarbons (PAHs) are expected in Titan's atmosphere and have been observed in the laboratory and found to be electrophilic, we consider the formation of negative ions. During the night, the very smallest molecular complexes accept free electrons to form negative ions. This results in a large reduction of the electron abundance both in the region between 150 and 350 km over that predicted when such aerosols are not considered. During the day time, ionization by photoemission from aerosols irradiated by solar ultraviolet (UV) radiation overwhelms the GCR-produced ionization. The presence of hydrocarbon and nitrile minor constituents substantially reduces the UV flux in the wavelength band from the cutoff of CH4 at 155 to 200 nm. These aerosols have such a low ionization potential that the bulk of the solar radiation at longer wavelengths is energetic enough to produce a photoionization rate sufficient to create an ionosphere even without galactic cosmic ray (GCR) bombardment. At altitudes below 60 km, the electron and positive ion abundances are influenced by the three-body recombination of ions and electrons. The addition of this reaction significantly reduces the predicted electron abundance over that previously predicted. Our calculations for the dayside show that the peaks of the charge distributions move to larger values as the altitude increases. This variation is the result of the increased UV flux present at the highest altitudes. Clearly, the situation is quite different than that for the night where the peak of the distribution for a particular size is nearly constant with altitude when negative ions are not present. The presence of very small aerosol particles (embryos) may cause the peak of the distribution to decrease from about 8 negative charges to as little as one negative charge or even zero charge. This dependence on altitude will require models of the aerosol formation to change their algorithms to better represent the effect of charged aerosols as a function of altitude. In particular, the charge state will be much higher than previously predicted and it will not be constant with altitude during the day time. Charging of aerosol particles, whether on the dayside or nightside, has a major influence on both the electron abundance and electrical conductivity. The predicted conductivities are within the measurement range of the HASI PWA instrument over most but not all, of the altitude range sampled.  相似文献   

5.
6.
The recent measurements of the vertical distribution and optical properties of haze aerosols as well as of the absorption coefficients for methane at long paths and cold temperatures by the Huygens entry probe of Titan permit the computation of the solar heating rate on Titan with greater certainty than heretofore. We use the haze model derived from the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens probe [Tomasko, M.G., Doose, L., Engel, S., Dafoe, L.E., West, R., Lemmon, M., Karkoschka, E., See, C., 2008a. A model of Titan's aerosols based on measurements made inside the atmosphere. Planet. Space Sci., this issue, doi:10.1016/j.pss.2007.11.019] to evaluate the variation in solar heating rate with altitude and solar zenith angle in Titan's atmosphere. We find the disk-averaged solar energy deposition profile to be in remarkably good agreement with earlier estimates using very different aerosol distributions and optical properties. We also evaluated the radiative cooling rate using measurements of the thermal emission spectrum by the Cassini Composite Infrared Spectrometer (CIRS) around the latitude of the Huygens site. The thermal flux was calculated as a function of altitude using temperature, gas, and haze profiles derived from Huygens and Cassini/CIRS data. We find that the cooling rate profile is in good agreement with the solar heating profile averaged over the planet if the haze structure is assumed the same at all latitudes. We also computed the solar energy deposition profile at the 10°S latitude of the probe-landing site averaged over one Titan day. We find that some 80% of the sunlight that strikes the top of the atmosphere at this latitude is absorbed in all, with 60% of the incident solar energy absorbed below 150 km, 40% below 80 km, and 11% at the surface at the time of the Huygens landing near the beginning of summer in the southern hemisphere. We compare the radiative cooling rate with the solar heating rate near the Huygens landing site averaging over all longitudes. At this location, we find that the solar heating rate exceeds the radiative cooling rate by a maximum of 0.5 K/Titan day near 120 km altitude and decreases strongly above and below this altitude. Since there is no evidence that the temperature structure at this latitude is changing, the general circulation must redistribute this heat to higher latitudes.  相似文献   

7.
Photochemical reaction pathways in Titan's atmosphere were investigated by irradiation of the individual components and the mixture containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene. The quantum yields for the loss of the reactants and the formation of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene and diacetylene. Irradiation of cyanoacetylene yields mainly hydrogen cyanide and small amounts of acetonitrile. When an amount of methane corresponding to its mixing ratio on Titan was added to these mixtures the quantum yields for the loss of reactants decreased and the quantum yields for hydrocarbon formation increased indicative of a hydrogen atom abstraction from methane by the photochemically generated radicals. GC/MS analysis of the products formed by irradiation of mixtures of all these gases generated over 120 compounds which were mainly aliphatic hydrocarbons containing double and triple bonds along with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction pathways were investigated by the use of 13C acetylene in these gas mixtures. No polycyclic aromatic compounds were detected. Vapor pressures of these compounds under conditions present in Titan's atmosphere were calculated. The low molecular weight compounds likely to be present in the atmosphere and aerosols of Titan as a result of photochemical processes are proposed.  相似文献   

8.
Cassini results indicate that solar photons dominate energy deposition in Titan’s upper atmosphere. These dissociate and ionize nitrogen and methane and drive the subsequent complex organic chemistry. The improved constraints on the atmospheric composition from Cassini measurements demand greater precision in the photochemical modeling. Therefore, in order to quantify the role of solar radiation in the primary chemical production, we have performed detailed calculations for the energy deposition of photons and photoelectrons in the atmosphere of Titan and we validate our results with the Cassini measurements for the electron fluxes and the EUV/FUV emissions. We use high-resolution cross sections for the neutral photodissociation of N2, which we present here, and show that they provide a different picture of energy deposition compared to results based on low-resolution cross sections. Furthermore, we introduce a simple model for the energy degradation of photoelectrons based on the local deposition approximation and show that our results are in agreement with detailed calculations including transport, in the altitude region below 1200 km, where the effects of transport are negligible. Our calculated, daytime, electron fluxes are in good agreement with the measured fluxes by the Cassini Plasma Spectrometer (CAPS), and the same holds for the measured FUV emissions by the Ultraviolet Imaging Spectrometer (UVIS). Finally, we present the vertical production profiles of radicals and ions originating from the interaction of photons and electrons with the main components of Titan’s atmosphere, along with the column integrated production rates at different solar zenith angles. These can be used as basis for any further photochemical calculations.  相似文献   

9.
Ronen Jacovi 《Icarus》2008,196(1):302-304
Titan's haze, formed by photolysis of C2H2, C2H4 and HCN, was found experimentally to trap Ar, Kr and Xe with efficiencies of 3.5 × 10−4, 1.9 × 10−3 and 6.5 × 10−2 [noble gas atom]/[carbon atom] in the polymer, respectively. The rate of aerosol formation and settling down of 3 × 10−13 kg m−2 s−1, as inferred from our experiments on CH4 photolysis in the far UV [Podolak, M., Bar-Nun, A., 1979. Icarus 39, 272-276], is sufficient to reduce the mixing ratios of 36Ar and 40Ar to their low values of (2.8 ± 0.3) × 10−7 and (4.3 ± 0.1) × 10−3, respectively, and those of Kr and Xe to below the detection limit of 10−8.  相似文献   

10.
There are observational and theoretical evidences both in favor of and against hydrodynamic escape (HDE) on Titan, and the problem remains unsolved. A test presented here for a static thermosphere does not support HDE on Titan and Triton but favors HDE on Pluto. Cooling of the atmosphere by the HCN rotational lines is limited by rotational relaxation above 1100 km and self-absorption below 900 km on Titan. HDE can affect the structure and composition of the atmosphere and its evolution. Hydrocarbon, nitrile, and ion chemistries are strongly coupled on Titan, and attempts to calculate them separately may result in significant errors. Here we apply our photochemical model of Titan’s atmosphere and ionosphere to the case of no hydrodynamic escape. Our model is still the only after-Cassini self-consistent model of coupled neutral and ion chemistry. The lack of HDE is a distinct possibility, and comparing models with and without HDE is of practical interest. The mean difference between the models and the neutral and ion compositions observed by INMS are somewhat better for the model with HDE. A reaction of NH2 with H2CN suggested by Yelle et al. (2009) reduces but does not remove a significant difference between the ammonia abundances in the models and INMS observations. Losses of methane and nitrogen and production and deposition to the surface of hydrocarbons and nitriles are evaluated in the model, along with lifetimes and evolutionary aspects.  相似文献   

11.
In the frame of fractal modeling of tholin aggregates we made a systematic analysis of their optical properties. Ballistic particle-cluster aggregation (BPCA) and diffusion-limited aggregation (DLA) of spherical primary particles (monomers) identical in material composition were considered. Aggregates composed of identical particles (monodisperse cluster), as well as of size-distributed particles (polydisperse cluster), were simulated. To calculate the light-scattering models, the code based on the superposition T-matrix method is used. Orientationally averaged properties of light scattering by model particles were extracted, and the normalized phase function and the degree of linear polarization were calculated as functions of scattering angle. We concluded that: (a) aggregation mechanism as well as specific internal structure of the clusters play only a minor role, and for the future it is not necessary to investigate aggregates of different types; (b) the intensity is very sensitive both to the size parameter of forming particles x and to the size parameter of the aggregates X; (c) characterization of the aggregates by the number of monomers is insufficient to retrieve physical properties of aggregates from optical measurement; and (d) it is very desirable to include into the analysis polarization data calculated for the different clusters.  相似文献   

12.
The Huygens descent through Titan's atmosphere in January 2005 will provide invaluable information about Titan's atmospheric composition and aerosol properties. The Descent Imager/Spectral Radiometer (DISR) will perform upward and downward looking radiation observations at various spectral ranges and spatial resolutions. To prepare the DISR data interpretation we have developed a new model for radiation transfer in Titan's atmosphere. The model solves for the full three-dimensional polarized radiation field in spherical geometry. However, the atmosphere itself is assumed to be spherically symmetric. The model is initialized with a fast-to-compute plane–parallel solution based on the doubling and adding algorithm that incorporates a spherical correction for the incoming direct solar beam. The full three-dimensional problem is then solved using the characteristics method combined with the Picard iterative approximation as described in Rozanov et al. (J. Quant. Spectrosc. Radiat. Transfer 69 (2001) 491). Aerosol scattering properties are calculated with a new microphysical model. In this formulation, aerosols are assumed to be fractal aggregates and include methane gas absorption embedded into the extinction coefficient. The resulting radiance of the model atmosphere's internal field is presented for two prescribed DISR wavelengths.  相似文献   

13.
P. Rannou  F. Hourdin  D. Luz 《Icarus》2004,170(2):443-462
We have developed a coupled general circulation model of Titan's atmosphere in which the aerosol haze is treated with a microphysical model and is advected by the winds. The radiative transfer accounts for the non uniform haze distribution and, in turn, drives the dynamics. We analyze the GCM results, especially focusing on the difference between a uniform haze layer and a haze layer coupled to the dynamics. In the coupled simulation the aerosols tend to accumulate at the poles, at latitudes higher than ±60°. During winter, aerosols strongly radiate at thermal infrared wavelengths enhancing the cooling rate near the pole. Since this tends to increase the latitudinal gradients of temperature the direct effect of this cooling excess, in contrast to the uncoupled haze case, is to increase the strength of the meridional cells as well as the strength of the zonal winds and profile. This is a positive feedback of the haze on dynamics. The coupled model reproduces observations about the state of the atmosphere better than the uniform haze model, and in addition, the northern polar hood and the detached haze are qualitatively reproduced.  相似文献   

14.
15.
The Electron Spectrometer (ELS), one of the sensors making up the Cassini Plasma Spectrometer (CAPS) revealed the existence of numerous negative ions in Titan's upper atmosphere. The observations at closest approach (∼1000 km) show evidence for negatively charged ions up to ∼10,000 amu/q, as well as two distinct peaks at 22±4 and 44±8 amu/q, and maybe a third one at 82±14 amu/q. We present the first ionospheric model of Titan including negative ion chemistry. We find that dissociative electron attachment to neutral molecules (mostly HCN) initiates the formation of negative ions. The negative charge is then transferred to more acidic molecules such as HC3N, HC5N or C4H2. Loss occurs through associative detachment with radicals (H and CH3). We attribute the three low mass peaks observed by ELS to CN, C3N/C4H and C5N. These species are the first intermediates in the formation of the even larger negative ions observed by ELS, which are most likely the precursors to the aerosols observed at lower altitudes.  相似文献   

16.
The thermochemical properties of the six reactions: (1) N2+hν (solar EUV) → N+ + N(4S) + e, (2) N+ + H2 → NH+ + H, (3) NH+ + H2 → NH+2 + H, (4) NH+2 + H2 → NH+3 + H, (5) NH+3 + H2 → NH+4 + H, and (6) NH+4 + e → NH3 + H, were theoretically proposed by Atreya in 1986 and were cited in 2003 by Bernard who assumed that this chain reaction would lead to ammonia formation in Titan's atmosphere. The thermochemical properties of these six reactions have been calculated by means of the coupled cluster singles and doubles (CCSD) at the CCSD/cc-pvdz level, and the CCSD/6-311++g(3df,3pd) level, and G2 method. The geometries of the reactants and products of reactions have been optimized, the energies of reactions have been computed. The analysis of the results shows that: (I) The free energies of four reactions among these six reactions are negative. It means that these reactions, namely reactions (1)-(6) except reaction (2), can react spontaneously in Titan's low temperature environment. The converted temperatures of reactions (3) and (5) are 11881.7 and 4596.9 K, respectively. (II) Reaction (2) is an endothermic reaction, its converted temperature is 1797.6 K. When T<1797.6 K, reaction (2) cannot react forward spontaneously. The barrier of reaction (2) is 26.154 kcal mol−1, which is probably too high to allow it to occur in the atmosphere of Titan. The rate for this reaction at 300 K has been calculated, and the value is k=4.16×10−7 s−1. (III) The results of the three methods are more or less the same. So it is concluded that this chain reaction cannot be a pathway to lead to ammonia (gas phase) formation in Titan's atmosphere.  相似文献   

17.
The contribution of exothermic ion and neutral chemistry to Titan's corona is studied. The production rates for fast neutrals N2, CH4, H, H2, 3CH2, CH3, C2H4, C2H5, C2H6, N(4S), NH, and HCN are determined using a coupled ion and neutral model of Titan's upper atmosphere. After production, the formation of the suprathermal particles is modeled using a two-stream simulation, as they travel simultaneously through a thermal mixture of N2, CH4, and H2. The resulting suprathermal fluxes, hot density profiles, and energy distributions are compared to the N2 and CH4 INMS exospheric data presented in [De La Haye, V., Waite Jr., J.H., Johnson, R.E., Yelle, R.V., Cravens, T.E., Luhmann, J.G., Kasprzak, W.T., Gell, D.A., Magee, B., Leblanc, F., Michael, M., Jurac, S., Robertson, I.P., 2007. J. Geophys. Res., doi:10.1029/2006JA012222, in press], and are found insufficient for producing the suprathermal populations measured. Global losses of nitrogen atoms and carbon atoms in all forms due to exothermic chemistry are estimated to be and .  相似文献   

18.
Using a one-dimensional model, we investigate the hydrogen budget and escape to space in Titan’s atmosphere. Our goal is to study in detail the distributions and fluxes of atomic and molecular hydrogen in the model, while identifying sources of qualitative and quantitative uncertainties. Our study confirms that the escape of atomic and molecular hydrogen to space is limited by the diffusion through the homopause level. The H distribution and flux inside the atmosphere are very sensitive to the eddy diffusion coefficient used above altitude 600 km. We chose a high value of this coefficient 1 × 108 cm2 s−1 and a homopause level around altitude 900 km. We find that H flows down significantly from the production region above 500 km to the region [300-500] km, where it recombines into H2. Production of both H and H2 also occurs in the stratosphere, mostly from photodissociation of acetylene. The only available observational data to be compared are the escape rate of H deduced from Pioneer 11 and IUE observations of the H torus 1-3 × 109 cm−2 s−1 and the latest retrieved value of the H2 mole fraction in the stratosphere: (1.1 ± 0.1) × 10−3. Our results for both of these values are at least 50-100% higher, though the uncertainties within the chemical schemes and other aspects of the model are large. The chemical conversion from H to H2 is essentially done through catalytic cycles using acetylene and diacetylene. We have studied the role of this diacetylene cycle, for which the associated reaction rates are poorly known. We find that it mostly affects C4 species and benzene in the lower atmosphere, rather than the H profile and the hydrogen budget. We have introduced the heterogenous recombination of hydrogen on the surface of aerosol particles in the stratosphere, and this appears to be a significant process, comparable to the chemical processes. It has a major influence on the H distribution, and consequently on several other species, especially C3H4, C4H2 and C6H6. Therefore, this heterogenous process should be taken into account when trying to understand the stratospheric distribution of these hydrocarbons.  相似文献   

19.
V. Vuitton  R.V. Yelle 《Icarus》2007,191(2):722-742
High-energy photons, electrons, and ions initiate ion-neutral chemistry in Titan's upper atmosphere by ionizing the major neutral species (nitrogen and methane). The Ion and Neutral Mass Spectrometer (INMS) onboard the Cassini spacecraft performed the first composition measurements of Titan's ionosphere. INMS revealed that Titan has the most compositionally complex ionosphere in the Solar System, with roughly 50 ions at or above the detection threshold. Modeling of the ionospheric composition constrains the density of minor neutral constituents, most of which cannot be measured with any other technique. The species identified with this approach include the most complex molecules identified so far on Titan. This confirms the long-thought idea that a very rich chemistry is actually taking place in this atmosphere. However, it appears that much of the interesting chemistry occurs in the upper atmosphere rather than at lower altitudes. The species observed by INMS are probably the first intermediates in the formation of even larger molecules. As a consequence, they affect the composition of the bulk atmosphere, the composition and optical properties of the aerosols and the flux of condensable material to the surface. In this paper, we discuss the production and loss reactions for the ions and how this affects the neutral densities. We compare our results to neutral densities measured in the stratosphere by other instruments, to production yields obtained in laboratory experiments simulating Titan's chemistry and to predictions of photochemical models. We suggest neutral formation mechanisms and highlight needs for new experimental and theoretical data.  相似文献   

20.
Strong experimental evidence is presented that the northern polar cloud observed in Titan's atmosphere by the Cassini orbiter (VIMS) was indeed composed of ethane aerosol as proposed by Griffith et al. [2006. Science 313, 1620-1622]. We report on the condensation and phase behavior of ethane aerosol under atmospheric conditions of Titan (145 hPa, 40 km altitude, 70-90 K, 10-30 ppm ethane in nitrogen). The results were obtained in an in-situ collisional cooling experiment combined with Fourier-transform infrared (FTIR) spectroscopy. Apart from the liquid phase, three crystalline phases (solid I, solid II, metastable) and the transitions into each other have been observed in the ethane aerosol. The phases were found to have a significant effect on the particles' IR spectra, their growth dynamics and the final size of the aerosols which varies between 0.5 and 4 μm (compared to 1-3 μm observed on Titan). This has strong implications on the ethane vapor pressure, precipitation and optical aerosol detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号