首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Wetlands are valuable ecosystems that provide many valuable services, yet many of these important ecosystems are at risk because of current trends in climate change. The Prairie Pothole Region (PPR) in the upper‐midwest of the United States and south‐central Canada, characterized by glacially sculpted landscapes and abundant wetlands, is one such vulnerable region. According to regional/global climate model predictions, drought occurrence will increase in the PPR region through the 21st century and thus will probably cause the amount of water in wetlands to decline. Water surface area (WSA) of Kidder County, ND, from 1984–2011 was measured by classifying TM/ETM+(Landsat Thematic Mapper / Enhanced Thematic Mapper Plus) images through the modified normalized difference water index. We then developed a linear model based on the WSA of these wetlands and historical climate data and used this to determine the wetland sensitivity to climate change and predict future wetlands WSA in the PPR. Our model based on Palmer drought severity index (PDSI) of the current year (PDSIt ? 0) and of the previous two years (PDSIt ? 2) can explain 79% of the annual wetland WSA variance, suggesting a high sensitivity of wetlands to drought/climate change. We also predicted the PPR wetlands WSA in the 21st century under A1B scenario (a mid‐carbon emission scenario) using simulated PDSI based on Intergovernmental Panel on Climate Change AR4 22‐model ensemble climate. According to our prediction, the WSA of the PPR wetlands will decrease to less than half of the baseline WSA (defined as the mean wetlands WSA of the 2000s) by the mid of the 21st century, and to less than one‐third by the 2080s, and will then slightly increase in the 2090s. This considerable future wetland loss caused only by climate change provides important implication to future wetland management and climate adaptation policy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The Gulf of Thailand has been a major marine resource for Thai people for a long time. However, recent industrialization and community development have exerted considerable stress on the marine environments and provoked habitat degradation. The following pollution problems in the Gulf have been prioritized and are discussed in details: (1) Untreated municipal and industrial waste water are considered to be the most serious problems of the country due to limited waste water treatment facilities in the area. (2) Eutrophication is an emerging problem in the gulf of Thailand. Fortunately, the major species of phytoplankton that have been reported as the cause of red tide phenomena were non-toxic species such as Noctiluca sp. and Trichodesmium sp. (3) Few problems have been documented from trace metals contamination in the Gulf of Thailand and public health threat from seafood contamination does not appear to be significant yet. (4) Petroleum hydrocarbon residue contamination is not a problem, although a few spills from small oil tankers have been recorded. A rapid decrease in mangrove forest, coral reefs, and fisheries resources due to mismanagement is also discussed.  相似文献   

3.
Abstract

Climate change will likely have severe effects on water shortages, flood disasters and the deterioration of aquatic systems. In this study, the hydrological response to climate change was assessed in the Wei River basin (WRB), China. The statistical downscaling method (SDSM) was used to downscale regional climate change scenarios on the basis of the outputs of three general circulation models (GCMs) and two emissions scenarios. Driven by these scenarios, the Soil and Water Assessment Tool (SWAT) was set up, calibrated and validated to assess the impact of climate change on hydrological processes of the WRB. The results showed that the average annual runoff in the periods 2046–2065 and 2081–2100 would increase by 12.4% and 45%, respectively, relative to the baseline period 1961–2008. Low flows would be much lower, while high flows would be much higher, which means there would be more extreme events of droughts and floods. The results exhibited consistency in the spatial distribution of runoff change under most scenarios, with decreased runoff in the upstream regions, and increases in the mid- and lower reaches of the WRB.
Editor Z.W. Kundzewicz; Associate editor D. Yang  相似文献   

4.
Climate variability and human activity were regarded as two contributors to streamflow alteration. However, the contributions of the two factors were still unclear in Dongting Lake. Therefore, it was crucial to quantify the relative impact of climate variability and human activity on streamflow alteration. The time series (1961–2010) was divided into three periods, namely, natural period (1961–1980), change period I (1981–2002) and change period II (2003–2010). Sensitivity analysis based on Budyko‐type equations was applied to reveal the contributions of climate variability and human activity in those two change periods, respectively. The results showed that during the change period I, climate variability was the main factor responsible for streamflow alteration in most parts of Dongting Lake, accounting for 60.07–67.27%. However, the impact of climate variability was slightly smaller than that of human activity in West Dongting Lake (the former accounting for 43.20% while the latter accounting for 56.80%). For the change period II, human activity was the dominate factor for streamflow alteration, accounting for 58.89–78.33%. The impact of climate variability gradually decreased while the impact of human activity gradually increased. Along with the intensification of the human activity, the impact of it became more dominant. The results could provide a reference for water resources planning and management decisions. Under the condition of uncontrollable climatic factor, effective measures should be put forward in controlling human activity, such as reservoir/dam operation, closed management of protected area and so on. Besides, it is essential to study the impact of climate variability on future water resources and water resource management under different climate change scenarios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Most natural disasters are caused by water‐/climate‐related hazards, such as floods, droughts, typhoons, and landslides. In the last few years, great attention has been paid to climate change, and especially the impact of climate change on water resources and the natural disasters that have been an important issue in many countries. As climate change increases the frequency and intensity of extreme rainfall, the number of water‐related disasters is expected to rise. In this regard, this study intends to analyse the changes in extreme weather events and the associated flow regime in both the past and the future. Given trend analysis, spatially coherent and statistically significant changes in the extreme events of temperature and rainfall were identified. A weather generator based on the non‐stationary Markov chain model was applied to produce a daily climate change scenario for the Han River basin for a period of 2001–2090. The weather generator mainly utilizes the climate change SRES A2 scenario driven by input from the regional climate model. Following this, the SLURP model, which is a semi‐distributed hydrological model, was applied to produce a long‐term daily runoff ensemble series. Finally, the indicator of hydrologic alteration was applied to carry out a quantitative analysis and assessment of the impact of climate change on runoff, the river flow regime, and the aquatic ecosystem. It was found that the runoff is expected to decrease in May and July, while no significant changes occur in June. In comparison with historical evidence, the runoff is expected to increase from August to April. A remarkable increase, which is about 40%, in runoff was identified in September. The amount of the minimum discharge over various durations tended to increase when compared to the present hydrological condition. A detailed comparison for discharge and its associated characteristics was discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Because of the complexity of social responses to climate change,as well as limitations of proxy data concerning interactions between climate change and human responses,the social impacts of past climate change and associated response mechanisms,thus,require further investigation.To shed light on the transmission of climate change impacts within historical Chinese society,we selected 30-year resolution sequences of temperature anomalies in eastern China and 10-year resolution sequences of grain harvest grades,famine indices,and frequencies of peasant uprisings in China over the past 2000 years.Using a food security perspective,we analyzed the impacts of temperature changes historically transmitted through Chinese production,population,and social subsystems,and differences in transmission characteristics between cold and warm units.Our results were as follows.(1)From 210 BC to 1910 AD,temperature changes in China were significantly positively correlated with grain harvest grades(correlation coefficient,0.338),and significantly negatively correlated with famine indices,and frequencies of peasant uprisings(correlation coefficients,-0.301 and-0.277,respectively).The correlation coefficients between famine indices and grain harvest grades or frequencies of peasant uprisings were very low.(2)There was a higher proportion of bumper or normal harvests(86.5%of the total decades),more moderate and mild famines(76%),and a lower proportion of peasant uprisings(33.3%)in the 30-year warm units.Conversely,there was a higher proportion of poor or normal harvests(70.7%),a greater proportion of moderate and severe famines(77.6%),and more peasant uprisings(51.7%)in the 30-year cold units.(3)Of the 23 main transmission pathways extending from temperature change to the social subsystem,13 occurred in cold units,of which 7 had an endpoint of peasant uprisings,and 10 occurred in warm units of which 3 had an endpoint of peasant uprisings.The main transmission pathways that were more likely to be associated with the impacts of temperature change were:Cold→poor harvests→severe famines→more uprisings;cold→poor harvests→moderate famines→more uprisings;warm→bumper harvests→mild famines→no uprisings;warm→bumper harvests→moderate harvests→no uprisings;warm→normal harvests→mild famines→no uprisings;and warm→normal harvests→moderate famines→no uprisings.(4)The transmission of the impacts of temperature change was a complex process.Within this process,famine was most prone to being modulated by human society.In the transmission pathways from the production to the social subsystem,there was a stepwise decrease in the occurrence rate of decades that were probably affected by climate change.In all cold units,10.4%of decades ending in more uprisings were most likely to be associated with the impacts of temperature change.In all warm units,47.9%of decades ending in no uprisings were most likely to be associated with the impacts of temperature change.This research can contribute a better understanding on the past interaction mechanisms and processes within the human-climate-ecosystem complex,as well as a better response to the impacts of the ongoing climate change.  相似文献   

7.
东北松嫩平原区湖泊对气候变化响应的初步研究   总被引:2,自引:3,他引:2  
以气候变暖为主要特点的气候变化已成为当前研究的焦点,气候变化和不同类型的生态系统之间的相互作用更是受到广泛关注.东北地区作为我国气候变化的一个敏感区,观测记录和多种模式预估显示该区气候变暖显著并将进一步增强,降水变化趋势则不明显或略有增加.东北松嫩平原湖泊群是我国湖泊密度最大的湖区之一,但近几十年来,该区湖泊生态环境不断恶化,其中气候因素最为受人关注.本文从以下几个角度综述了松嫩平原湖泊群对气候变化的响应:(1)湖泊面积和湖泊水位;(2)湖泊水质;(3)湖泊生态多样性.在此基础上,探讨了该区未来气候变化对湖泊的可能影响以及湖泊的演变趋势,也阐述了在这种自然背景下的人类活动对湖泊环境演变的影响.  相似文献   

8.
Using the defined sensitivity index, the sensitivity of streamflow, evapotranspiration and soil moisture to climate change was investigated in four catchments in the Haihe River basin. Climate change contained three parts: annual precipitation and temperature change and the change of the percentage of precipitation in the flood season (Pf). With satisfying monthly streamflow simulation using the variable infiltration capacity model, the sensitivity was estimated by the change of simulated hydrological variables with hypothetical climatic scenarios and observed climatic data. The results indicated that (i) the sensitivity of streamflow would increase as precipitation or Pf increased but would decrease as temperature increased; (ii) the sensitivity of evapotranspiration and soil moisture would decrease as precipitation or temperature increased, but it to Pf varied in different catchments; and (iii) hydrological variables were more sensitive to precipitation, followed by Pf, and then temperature. The nonlinear response of streamflow, evapotranspiration and soil moisture to climate change could provide a reference for water resources planning and management under future climate change scenarios in the Haihe River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Based on hydrological and climatic data covering the period from 1961 to 2008, this paper studies the hydrological responses to climate change and to human activities in the Ebinur Lake Catchment. The results show that the annual runoff of three rivers in Ebinur Lake Catchment exhibited different change trends. Specifically, in Jinghe River and Kuytun River exhibited a slightly increasing trend, but an adverse trend in Bortala River, and the variation trend has been the most dramatic since the mid-1990s. The observed variation in the runoff was resulted from the elevated alpine precipitation, rather than rising temperature, and that precipitation is a major factor for runoff generation. The runoff CAR model proposed by this paper can be used to predict the annual runoff in three rivers, and demonstrated annual runoff in Bortala River and Jinghe River will display an increased trend, while a less decreasing trend in Kuytun River under the climate change scenarios of warm-humid variation. In addition, the exploitation of the area of cultivated land led to more water resources consumption, primarily for agriculture irrigation, is the cause of the persistently ecoenvironment degradation, which have reached in a critical state thus, a more pressing concern is the development a scientifically reasonable and administratively practical water resource management scheme.  相似文献   

10.
The warming of the Earth's atmosphere system is likely to change temperature and precipitation, which may affect the climate, hydrology and water resources at the river basins over the world. The importance of temperature change becomes even greater in snow or glacier dominated basins where it controls the snowmelt processes during the late‐winter, spring and summer months. In this study hydrologic responses of streamflow in the Pyanj and Vaksh River basins to climate change are analysed with a watershed hydrology model, based on the downscaled atmospheric data as input, in order to assess the regional climate change impact for the snowfed and glacierfed river basins in the Republic of Tajikistan. As a result of this analysis, it was found that the annual mean river discharge is increasing in the future at snow and glacier dominated areas due to the air temperature increase and the consequent increase in snow/ice melt rates until about 2060. Then the annual mean flow discharge starts to decrease from about 2080 onward because the small glaciers start to disappear in the glacier areas. It was also found that there is a gradual change in the hydrologic flow regime throughout a year, with the high flows occuring earlier in the hydrologic year, due to the warmer climate in the future. Furthermore, significant increases in annual maximum daily flows, including the 100‐year return period flows, at the Pyanj and Vaksh River basins toward the end of the 21st century can be inferred from flood frequency analysis results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT

The spatial-temporal variation of runoff in an inland basin is very sensitive to climate change. Investigation of runoff change in arid areas is typically limited by lack of meteorological and hydrogeological data. This study focused on runoff change in the Yarkand River source area of the Tarim Basin, China, with the aim of analysing the influence of climate change on the response characteristics of discharge. Sensitivity analysis was introduced to reflect the degree of influence of climate on runoff. Based on the sensitivity factors, over 30 sets of schemes including the IPCC Fourth Assessment Report were simulated using the MIKE 11/NAM rainfall–runoff model and the response of runoff was analysed. The results indicate that there are significant correlations and synchronous fluctuations between runoff and precipitation, evaporation and temperature. The characteristics of the sensitivity of runoff can be fitted well by Bi-Gaussian functions. The functions show that high sensitivity indexes mainly appear in the interval of 165 ± 100 m3 s-1. The influence of precipitation on runoff is greater than that of other climate factors. Through simulation using the NAM model, we found that change of annual runoff was related to the initial climate condition. Annual runoff will have an increasing trend if it has a strong sensitivity to the initial meteorological condition. Moreover, the runoff decreases linearly with evaporation. Also it has a positive relationship with temperature and precipitation. Across the four seasons, the impact in summer and winter is greater than that in spring and autumn. Estimation of the spatial-temporal influence of climate on runoff could provide insight for water resource development in arid areas.
Editor Z.W. Kundzewicz Associate editor not assigned  相似文献   

12.
In order to assess the annual mass balance of the Mandrone glacier in the Central Alps an energy-balance model was applied, supported by snowpack, meteorological and glaciological observations, together with satellite measurements of snow covered areas and albedo. The Physically based Distributed Snow Land and Ice Model (PDSLIM), a distributed multi-layer model for temperate glaciers, which was previously tested on both basin and point scales, was applied.Verification was performed with a network of ablation stakes over two summer periods. Satellite images processed within the Global Land Ice Measurements from Space (GLIMS) project were used to estimate the ice albedo and to verify the position of the simulated transient snowline on specific dates. The energy balance was estimated for the Mandrone and Presena glaciers in the Central Italian Alps. Their modeled balances (−1439 and −1503 mm w.e. year−1, respectively), estimated over a 15 year period, are in good agreement with those obtained with the glaciological method for the Caresèr glacier, a WGMS (World Glacier Monitoring Service) reference located in the nearby Ortles-Cevedale group.Projections according to the regional climate model COSMO-CLM (standing for COnsortium for Small-scale MOdeling model in CLimate Mode) indicate that the Mandrone glacier might not survive the current century and might be halved in size by 2050.  相似文献   

13.
North and Central America has a combined total of 2.5 million km2 of wetlands, with 51 % in Canada, 46 % in the USA, and the remainder in subtropical and tropical Mexico and Central America. Loss rates are well known for the conterminous USA and for parts of Canada but poorly understood for Mexico and Central America. Wetlands of North America continue to be threatened due to drainage for agriculture and urban development, extreme coastal and river management, water pollution from upstream watersheds, peat mining, waterfowl management, and more recently climate change. Human use of wetlands in this region are many, including receiving ecosystem services such as water purification, flood regulation, climate regulation, and direct provisioning benefits for many cultures living in and among wetlands, especially in the Louisiana Delta and in Mexico and Central America. Climate change affects will cause wetland impacts on coastal wetlands due to sea level rise and on inland wetlands due to changes in precipitation, air temperature, and river discharges. Wetlands, in turn, have a major role in the storage of carbon in boreal regions of Canada and with carbon sequestration in temperate and tropical wetlands of the Americas.  相似文献   

14.
Climate change is expected to increase temperatures and lower rainfall in Mediterranean regions; however, there is a great degree of uncertainty as to the amount of change. This limits the prediction capacity of models to quantify impacts on water resources, vegetation productivity and erosion. This work circumvents this problem by analysing the sensitivity of these variables to varying degrees of temperature change (increased by up to 6·4 °C), rainfall (reduced by up to 40%) and atmospheric CO2 concentrations (increased by up to 100%). The SWAT watershed model was applied to 18 large watersheds in two contrasting regions of Portugal, one humid and one semi‐arid; incremental changes to climate variables were simulated using a stochastic weather generator. The main results indicate that water runoff, particularly subsurface runoff, is highly sensitive to these climate change trends (down by 80%). The biomass growth of most species showed a declining trend (wheat down by 40%), due to the negative impacts of increasing temperatures, dampened by higher CO2 concentrations. Mediterranean species, however, showed a positive response to milder degrees of climate change. Changes to erosion depended on the interactions between the decline in surface runoff (driving erosion rates downward) and biomass growth (driving erosion rates upward). For the milder rainfall changes, soil erosion showed a significant increasing trend in wheat fields (up to 150% in the humid watersheds), well above the recovery capacity of the soil. Overall, the results indicate a shift of the humid watersheds to acquire semi‐arid characteristics, such as more irregular river flows and increasingly marginal conditions for agricultural production. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
16.
A method of solution for the diffusion-convection equation in one spatial dimension has been developed previously. The generalization of this method into two-spatial dimensions will be presented. The method employs space-time volume elements with edges joining the nodes at subsequent time levels oriented along the characteristics of the associated pure convection problem. The accuracy and utility of the method are demonstrated by solving several examples and results are compared with the exact solutions.  相似文献   

17.
Temporal variability of precipitation over the Iberian Peninsula (IP) has high spatial gradients. Therefore, statistics of the temporal behaviour of precipitation and derived quantities over the IP must be estimated taking into account these spatial gradients. Some statistics can be displayed over a map. However there are statistics, such as Probability Density Functions at each location of the IP, that are impossible to display in a map. Because of this, it is mandatory to reduce the number of degrees of freedom which, in this case, consists of a reduction of the time series representative of the IP domain. In this work, we present a spatial partition of the IP region into areas of similar precipitation. For that, an observed dataset of daily-total precipitation for the years between 1951 and 2003 was used. The land-only high resolution data was obtained on a regular grid with 0.2° resolution in the IP domain. This data was subjected to a k-means Cluster Analysis in order to divide the IP into K regions. The clustering was performed using the squared Euclidean distance. Four clusters of IP grid points, defining 4 IP regions, were identified. The grid points in each region share the same time-varying behaviour which is different from region to region. The annual precipitation discriminates the following regions: (1) north Iberia, (2) a large region extending from the centre to the Mediterranean shores of the IP, (3) a large region ranging from the centre to the western and southwestern shores of the Iberia, and (4) northwest Iberia. The regions obtained for the four seasons of the year are similar. These results are consistent with the thermodynamic characteristics described in the available literature. These Iberian regions were used to assess climate change of seasonal precipitation from the multi-model ensemble of the fifteen simulations provided by the European project ENSEMBLES. Probability Density Functions of annual- and seasonal-total precipitation, consecutive dry days, and total precipitation above the 95th percentile, averaged in each region were estimated for a reference climate (1961–1960), a near-future climate (2021–2050), and a distant-future climate (2069–2098). Climate change projections are based on comparisons of these functions between each future climate and the reference climate.Finally, we emphasize that: (i) the methodology used here, based on Cluster Analysis, can be used to regionalise other areas of the world, and (ii) the identified regions of the IP can be used to represent the Iberian precipitation by four time series that can be subjected to further analysis, whose results can be presented in a concise manner.  相似文献   

18.
This paper examines the timing, nature and magnitude of river response in upland, piedmont and lowland reaches of the Tyne basin, northern England, to high-frequency (20–30 year) changes in climate and flood regime since 1700 AD. Over this period fluvial activity has been characterized by alternating phases of river-bed incision and stability coinciding with non-random, decadal-scale fluctuations in flood frequency and hydroclimate that appear to be linked to changes in large-scale upper atmospheric circulation patterns. Episodes of widespread channel bed incision (1760–1799, 1875–1894, 1955–1969) result from a higher frequency of large floods (> 20 year return period) and cool, wet climate under meridional circulation regimes. Phases of more moderate floods (5–20 year return period), corresponding to zonal circulation types (1820–1874, 1920–1954), are characterized by enhanced lateral reworking and sediment transfer in upper reaches of the catchment, and channel narrowing and infilling downstream. Rates of fluvial activity are reduced in intermediate periods (1800–1819, 1895–1919) with no dominant circulation regime associated with lower flood frequency and magnitude. The results of this study provide a valuable guide for forecasting probable drainage basin and channel response to future climate change.  相似文献   

19.
The weakening relationship between inter-annual temperature variability and vegetation activity in the Northern Hemisphere over the last three decades has been reported by a recent study. However, how and to what extent vegetation activity responds to climate change in China is still unclear. We applied the Pearson correlation and partial correlation methods with a moving 15-y window to the GIMMS NDVI dataset from NOAA/AVHRR and observed climate data to examine the variation in the relationships between vegetation activity and climate variables. Results showed that there was an expanding negative response of vegetation growth to climate warming and a positive role of precipitation. The change patterns between NDVI and climate variables over vegetation types during the past three decades pointed an expending negative correlation between NDVI and temperature and a positive role of precipitation over most of the vegetation types (meadow, grassland, shrub, desert, cropland, and forest). Specifically, correlation between NDVI and temperature (PNDVI-T) have shifted from positive to negative in most of the station of temperature-limited areas with evergreen broadleaf forests, whereas precipitation-limited temperate grassland and desert were characterized by a positive PNDVI-P. This study contributes to ongoing investigations of the effects of climate change on vegetation activity. It is also of great importance for designing forest management strategies to cope with climate change.  相似文献   

20.
ABSTRACT

Climate change alters hydrological processes and results in more extreme hydrological events, e.g. flooding and drought, which threaten human livelihoods. In this study, the large-scale distributed variable infiltration capacity (VIC) model was used to simulate future hydrological processes in the Yarlung Zangbo River basin (YZRB), China, with a combination of the CMIP5 (Coupled Model Intercomparison Project, fifth phase) and MIROC5 (Model for Interdisciplinary Research on Climate, fifth version) datasets. The results indicate that the performance of the VIC model is suitable for the case study, and the variation in runoff is remarkably consistent with that of precipitation, which exhibits a decreasing trend for the period 2046–2060 and an increasing trend for 2086–2100. The seasonality of runoff is evident, and substantial increases are projected for spring runoff, which might result from the increase in precipitation as well as the increase in the warming-induced melting of snow, glaciers and frozen soil. Moreover, evapotranspiration exhibits an increase between 2006–2020 and 2046–2060 over the entire basin, and soil moisture decreases in upstream areas and increases in midstream and downstream areas. For 2086–2100, both evapotranspiration and soil moisture increase slightly in the upstream and midstream areas and decrease slightly in the downstream area. The findings of this study could provide references for runoff forecasting and ecological protection for similar studies in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号