首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Onyx River (Wright Valley, Antarctica) is a dilute meltwater stream originating in the vicinity of the Wright Lower Glacier. It acquires a significant fraction of its salt content when glacial meltwaters contact Wright Valley soils at Lake Brownworth and the concentrations of all ions increase with distance along the 28-km channel down to Lake Vanda. Average millimolar concentrations of major ions at the Vanda weir during the 1980–1981 flow season were: Ca = 0.119; Mg = 0.061; Na = 0.212; K = 0.033; Q = 0.212; SO4 = 0.045; HCO3 = 0.295; and SiO2 = 0.049. Based on the flow measurements of Chinn (1982), this amounts to an annual flux (in moles) to Lake Vanda of: Ca = 0.238 × 106; Mg = 0.122 × 106; Na = 0.424 × 106; K = 0.066 × 106; Cl = 0.424 × 106; SO4 = 0.09 × 106; HCO3 = 0.59 × 106; SiO2 = 0.098 × 106.In spite of the large salt input from this source, equilibrium evaporation of Onyx River water would have resulted in early calcite deposition and in the formation of a Na-Mg-Cl-HCO3 brine rather than in the Ca-Na-Mg-Cl waters observed in Lake Vanda. The river alone could not have produced a brine having the qualitative geochemical features of the lower saline waters of Lake Vanda.It is proposed that the Vanda brine is instead the result of past ( > 1200 yrs BP) mixing events between Onyx River inflows and calcium chloride-rich deep groundwaters derived from the Don Juan Basin. The mixing model presented here shows that the Onyx River is the major contributor of K, HCO3, SO4, and (possibly) Mg found in the lake and a significant contributor (approximately one half) of the observed Na. Calcium and Cl, on the other hand, came largely from deep groundwater sources in the Don Juan Basin. All concentrations except Mg are well predicted by this model. The chemical composition of the geologically recent upper lake is explained in terms of ionic diffusion from the pre-formed brine, coupled with Onyx River inflow. Ionic ratios calculated from this latter model are in very good agreement with those observed in the lake at 35 meters.  相似文献   

2.
Chert has formed from two sodium-silicate minerals, magadiite (NaSi7,O13(OH)3·3H2O) and kenyaite (NaSi11O20.5(OH)4·3H2O), in uppermost Pleistocene deposits of lakes Magadi and Natron in Kenya and Tanzania. The chert consists of finely crystalline quartz and characteristically forms nodules of irregular shape with white coatings having reticulate surface patterns. Similar nodules are widespread in lower and middle Pleistocene lacustrine deposits in the vicinity of Lake Magadi, Lake Natron, and Olduvai Gorge. Although magadiite and kenyaite are absent in the lower and middle Pleistocene deposits, the chert in these beds probably formed from a sodium-silicate precursor. All of the chert-bearing sediments were deposited in saline, alkaline lakes rich in dissolved sodium carbonate-bicarbonate.Magadiite (and chert) may form either thin, widespread deposits or localized masses which may be cross-cutting. Thin, widespread layers of magadiite have been precipitated by mixing of silica-rich brine with fresh water in a chemically stratified lake; localized masses may have been formed by interaction of brine with fresher water entering the floor or margin of the lake. Magadiite and kenyaite can alter to chert in contact with sodium-carbonate brine and possibly by leaching with relatively fresh water over a period of 20,000 years or less.The siliceous zeolites clinoptilolite and erionite predominate in trachyte tuffs associated with magadiite and chert; less-siliceous phillipsite predominates in trachyte tuffs of chert-free sequences.  相似文献   

3.
Hydrogeochemical investigations are carried out in and around Perumal Lake, Cuddalore district, South India in order to assess its suitability in relation to domestic and agricultural uses. The water samples (surface water = 16; groundwater = 12) were analyzed for various physicochemical attributes like pH, electrical conductivity (EC), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl), bicarbonate (HCO3 ), sulfate (SO4 2−), phosphate (PO4), silica (H4SiO4) and total dissolved solids (TDS). Major hydrochemical facies were identified using Piper trilinear diagram. Hydrogeochemical processes controlling the water chemistry are water–rock interaction rather than evaporation and precipitation. Interpretation of isotopic signatures reveals that groundwater samples recharged by meteoric water with few water–rock interactions. A comparison of water quality in relation to drinking water quality standard proves that the surface water samples are suitable for drinking purpose, whereas groundwater in some areas exceeds the permissible limit. Various determinants such as sodium absorption ratio (SAR), percent sodium (Na%), residual sodium carbonate (RSC) and permeability index (PI) revealed that most of the samples are suitable for irrigation.  相似文献   

4.
The Didwana playa, the second largest playa in the eastern part of the Thar desert, is 5.6 km long and 2.4 km wide and supports commercial salt production. The thickness of lake sediment package is reported to be 20 m and comprises fine grained clays and silts, with abundant calcite, gypsum, and halite, associated with hypersaline water. Isolated hills of graphitic phyllite and quartzite are seen on the western side of the lake. During the course of investigations for uranium in surficial environment of semi-arid terrain of Rajasthan, ground water sampling defined a NE-SW trending uranium halo encompassing the Didwana playa. Subsequent sampling of unlined dug wells, up to water table in central part of the playa, indicated uranium values up to 190 ppm and 2072 ppb in lake sediments and brine respectively. These values are of the order of 21 ppm and 192 ppb towards the southwestern periphery of the lake. The average uranium content, as inferred from 12 samples in the central part of the lake, is around 60 ppm over a thickness of 5 m. It appears that the uranium is loosely bonded to the sediments in amorphous form and is, hence, easily leachable. Samples of brine (n=10), from both the central and southwestern portions of the lake, analysed high (1,67,500–3,00,000 mg/l) TDS, HCO3 (1128–8395 mg/l), and SO4 (30,536–88,000 mg/l). These are of alkaline (pH: 7.2–9.3) and reducing (Eh: −200 to −340 mV) nature. Under these Eh-pH conditions below the groundwater table, and for such uranium bearing groundwater, precipitation of primary uranium is expected. It is, therefore, modelled that uranium in lake sediment package above water table is concentrated by evaporation process and by chemical reduction below the water table.  相似文献   

5.
6.
The salt assemblages precipitated during evaporation of concentrated brine collected from Gasikule Salt Lake (GSL) were studied to better understand the formation of potassium deposits in the Qaidam Basin. The study included isothermal evaporation at 25 °C in the laboratory and solar evaporation in the ponds at GSL field. Brines increased in density and became moderately acidic (pH?≈?5.30) while major ion geochemistry and precipitate mineralogy all showed broad agreement between both systems. Four salt assemblages were identified in the isothermal evaporation experiment: halite?→?halite?+?hexahydrite?→?halite?+?bischofite?+?carnallite?→?bischofite. Alternately, three salt assemblages were recognized in the solar evaporation: halite?→?halite?+?epsomite?+?carnallite?→?halite?+?carnallite?+?bischofite. The key difference in salt assemblages between the two systems is attributed to differences in relative humidity and temperature conditions. Although the GSL has deep spring inflow recharge, the high abundance of MgSO4 salts demonstrates that the salt assemblages are similar to normal seawater evaporation. Thus, different proportions of deep spring inflow and river water could form both MgSO4-deficient potassium evaporite and normal seawater potassium evaporites. Therefore, nonmarine water may form diverse potassium evaporite deposits in continental basins when the geological structure as well as hydrogeological and climatic conditions is appropriate.  相似文献   

7.
 Within the next 10–15 years, over 35 mines in Nevada will have a lake in their open pit mines after dewatering and cessation of mining. Of the ten past or existing pit lakes at eight different gold mines for which temporal data are available, most had near neutral pH, yet most had at least one constituent (e.g., As, SO4, TDS) that exceeded drinking water standards for at least one sampling event. Most samples from pit lakes had TDS exceeding drinking water standards, but lower than that in the natural Pyramid (TDS≈5,500 mg/l) and Walker (TDS≈14,000 mg/l) Lakes. In the past century, salinity increased in both natural, terminal lakes, in part due to irrigation withdrawals and evapoconcentration. The salinity in the pit lakes may also increase through time via evapoconcentration. However, water balance models indicate that up to 132% (Walker Lake) of the total yearly inflow evaporates from the terminal lakes, whereas steady-state may be reached in the pit lakes modelled, where evaporative losses account for only ≈6% of the total pit lake volume annually and ≈100% of the net inflow (groundwater inflow minus outflow, precipitation and runoff into the lake). The effects of evapoconcentration are expected to be less significant at most pit lakes than at the natural, terminal lakes because (1) evaporation rates are lower at many pit lakes because they are located at higher elevations than the terminal lakes, and (2) the surface area to depth ratio of the pit lakes is >1000 times smaller than that of the terminal lakes. Received: 1 March 1999 · Accepted: 13 April 1999  相似文献   

8.
Geochemical processes that take place in the aquifer have played a major role in spatial and temporal variations of groundwater quality. This study was carried out with an objective of identifying the hydrogeochemical processes that controls the groundwater quality in a weathered hard rock aquifer in a part of Nalgonda district, Andhra Pradesh, India. Groundwater samples were collected from 45 wells once every 2 months from March 2008 to September 2009. Chemical parameters of groundwater such as groundwater level, EC and pH were measured insitu. The major ion concentrations such as Ca2+, Mg2+, Na+, K+, Cl, and SO4 2− were analyzed using ion chromatograph. CO3 and HCO3 concentration was determined by acid–base titration. The abundance of major cation concentration in groundwater is as Na+ > Ca2+ > Mg2+ > K+ while that of anions is HCO3  > SO4 2− > Cl > CO3 . Ca–HCO3, Na–Cl, Ca–Na–HCO3 and Ca–Mg–Cl are the dominant groundwater types in this area. Relation between temporal variation in groundwater level and saturation index of minerals reveals the evaporation process. The ion-exchange process controls the concentration of ions such as calcium, magnesium and sodium. The ionic ratio of Ca/Mg explains the contribution of calcite and dolomite to groundwater. In general, the geochemical processes and temporal variation of groundwater in this area are influenced by evaporation processes, ion exchange and dissolution of minerals.  相似文献   

9.
Zabuye Salt Lake in Tibet, China is a carbonate-type salt lake, which has some unique characteristics that make it different from other types of salt lakes. The lake is at the latter period in its evolution and contains liquid and solid resources. Its brine is rich in Li, B, K and other useful minor elements that are of great economic value. We studied the concentration behavior of these elements and the crystallization paths of salts during isothermal evaporation of brine at 15°C and 25°C. The crystallization sequence of the primary salts from the brine at 25°C is halite (NaCl) → aphthitalite (3K2SO4·Na2SO4) → zabuyelite (Li2CO3)→ trona (Na2CO3·NaHCO3·2H2O) → thermonatrite (Na2CO3·H2O) → sylvite (KCl), while the sequence is halite (NaCl) → sylvite (KCl) → trona (Na2CO3·NaHCO3·2H2O) → zabuyelite (Li2CO3) → thermonatrite (Na2CO3·H2O) → aphthitalite (3K2SO4·Na2SO4) at 15°C. They are in accordance with the metastable phase diagram of the Na+, K+-Cl?, CO32?, SO42?-H2O quinary system at 25°C, except for Na2CO3·7H2O which is replaced by trona and thermonatrite. In the 25°C experiment, zabuyelite (Li2CO3) was precipitated in the early stage because Li2CO3 is supersaturated in the brine at 25°C, in contrast with that at 15°C, it precipitated in the later stage. Potash was precipitated in the middle and late stages in both experiments, while boron was concentrated in the early and middle stages and precipitated in the late stage.  相似文献   

10.
The Heihe River Basin is a typical arid inland river basin for examining stress on groundwater resources in northwest China. The basin is composed of large volumes of unconsolidated Quaternary sediments of widely differing grain size, and during the past half century, rapid socio-economic development has created an increased demand for groundwater resources. Understanding the hydrogeochemical processes of groundwater and water quality is important for sustainable development and effective management of groundwater resources in the Heihe River basin. To this end, a total of 30 representative groundwater samples were collected from different wells to monitor the water chemistry of various ions and its quality for irrigation. Chemical analysis shows that water presents a large spatial variability of chemical facies (SO4 2−–HCO3, SO4 2−–Cl, and Cl–SO4 2−) as groundwater flow from recharge area to discharge area. The ionic ratio indicates positive correlation between the flowing pairs of parameters: Cl and Na+(r = 0.95), SO4 2− and Na+ (r = 0.84), HCO3 and Mg2+(r = 0.86), and SO4 2− and Ca2+ (r = 0.91). Dissolution of minerals, such as halite, gypsum, dolomite, silicate, and Mirabilite (Na2SO4·10H2O) in the sediments results in the Cl, SO4 2−, HCO3 , Na+, Ca2+ and Mg2+ content in the groundwater. Other reactions, such as evaporation, ion exchange, and deposition also influence the water composition. The suitability of the groundwater for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. The results show that most of the groundwater samples are suitable for irrigation uses barring a few locations in the dessert region in the northern sub-basin.  相似文献   

11.
Geochemical Evolution of Great Salt Lake, Utah, USA   总被引:1,自引:0,他引:1  
The Great Salt Lake (GSL) of Utah, USA, is the largest saline lake in North America, and its brines are some of the most concentrated anywhere in the world. The lake occupies a closed basin system whose chemistry reflects solute inputs from the weathering of a diverse suite of rocks in its drainage basin. GSL is the remnant of a much larger lacustrine body, Lake Bonneville, and it has a long history of carbonate deposition. Inflow to the lake is from three major rivers that drain mountain ranges to the east and empty into the southern arm of the lake, from precipitation directly on the lake, and from minor groundwater inflow. Outflow is by evaporation. The greatest solute inputs are from calcium bicarbonate river waters mixed with sodium chloride-type springs and groundwaters. Prior to 1930 the lake concentration inversely tracked lake volume, which reflected climatic variation in the drainage, but since then salt precipitation and re-solution, primarily halite and mirabilite, have periodically modified lake-brine chemistry through density stratification and compositional differentiation. In addition, construction of a railway causeway has restricted circulation, nearly isolating the northern from the southern part of the lake, leading to halite precipitation in the north. These and other conditions have created brine differentiation, mixing, and fractional precipitation of salts as major factors in solute evolution. Pore fluids and diagenetic reactions have been identified as important sources and especially sinks for CaCO3, Mg, and K in the lake, depending on the concentration gradient and clays.  相似文献   

12.
The geochemical study of the Dankar, Thinam and Gete lakes of the Spiti Valley has revealed that these lakes are characterized by varying contents of major ions, i.e. Ca, Mg, HCO3, Na, K, Cl, SO4, SiO2 and Sr as trace element. The concentration of these elements is significant, as they indicate the nature of the lithology and the type of weathering at the source. The sediment chemistry data have also been employed to quantify weathering intensity and to elucidate the provenance and basin tectonic setting where terrigenous sediment is deposited.Dankar Lake is located on the limestone-dolomite-rich Lilang Group of rocks (Triassic), and dissolution of carbonate is the prime source of ionic concentration in this lake. The high (Ca+Mg):HCO3 equivalent ratio of 6.94 indicates carbonate weathering, and the very low (Na+K):TZ+ ratio of 0.07, which is used as an indicator of silicate weathering, shows insignificant silica dissolution in this lake. On the other hand, in Lake Thinam a relatively low (Ca+Mg):HCO3 equivalent ratio of 2.09, a (Na+K):TZ+ ratio of 0.12 and other parameters indicate that carbonate is derived from calcareous nodules and thin intercalations of limestone in the Spiti shales (Jurassic), and also some contribution from silicate lithology is evident. Mixing of groundwater cannot be ruled out, as springs are observed in this lake. In Lake Gete, the (Ca+Mg):HCO3 equivalent ratio is again high at 5.04, and the (Na+K):TZ+ ratio is 0.15, indicating dissolution of both carbonate and silicate rocks in the basin. This is consistent with the corresponding lithology in the lakes, and their denudation. Very high Sr contents of 2,331 µg/l in Dankar Lake, 715 µg/l in Gete Lake and 160 µg/l in Thinam Lake are significant and support dissolution of carbonate rocks, as the silicate rocks contribute less Sr although its isotopic ratio is high. It is also reflected that mechanical erosion and chemical weathering are perhaps the effective processes in this region. The former exposes fresh mineral surface for dissolution. The chemical index of alteration (CIA), with an average value of 78.79 in Dankar and 81.06 in Gete, indicates high weathering conditions. The K2O–Fe2O3–Al2O3 triangular plots of the samples demonstrate residual clay formation, indicating intense weathering at the source. The clay mineralogical data corroborate the above observation.The sediment chemistry data document depletion in SiO2 and Al2O3, as they are enriched in carbonates and depleted in Na2O, K2O, MnO, and TiO2, as compared to PAAS and UCC which are related to strong weathering at the source. The positive linear correlation between K and Rb suggests that they are contained in the illitic phase, and high positive correlation of Zr and Y with SiO2 indicates their association with coarser-grain, quartz-rich sandstone. The high phyllosilicates and low feldspar and major element chemistry indicate recycling and mineral maturity of sediments deposited in the Tethyan basin in a passive margin setting. This also indicates older sedimentary-metasedimentary rocks which are ideally exposed in the Spiti Valley. The tectonic discriminant plots portray a passive margin tectonic setting of the detritus in these lakes.  相似文献   

13.
Experiments have been conducted in the P-T range 2.5–15 GPa and 850–1,500°C using bulk compositions in the systems SiO2–TiO2–Al2O3–Fe2O3–FeO–MnO–MgO–CaO–Na2O–K2O–P2O5 and SiO2–TiO2–Al2O3–MgO–CaO–Na2O to investigate the Ca-Eskola (CaEs Ca0.50.5AlSi2O6) content of clinopyroxene in eclogitic assemblages containing garnet + clinopyroxene + SiO2 ± TiO2 ± kyanite as a function of P, T, and bulk composition. The results show that CaEsss in clinopyroxene increases with increasing T and is strongly bulk composition dependent whereby high CaEs-contents are favoured by bulk compositions with high normative anorthite and low diopside contents. In this study, a maximum of 18 mol% CaEsss was found at 6 GPa and 1,350°C in a kyanite-eclogite assemblage garnet + clinopyroxene + kyanite + rutile + coesite. By comparison, no significant increase in CaEsss with increasing P could be observed. If the formation of oriented SiO2-rods frequently observed in eclogititc clinopyroxenes is due to the retrogressive breakdown of a CaEs-component then these textures are a cooling rather than a decompression phenomenon and are most likely to be found in kyanite-bearing eclogites cooled from temperatures ≥750°C. The presence of clinopyroxene with approx. 4 mol% CaEsss in an experiment conducted at 2.5 GPa/850°C confirms earlier suggestions based on field data that vacancy-rich clinopyroxenes are not necessarily restricted to ultrahigh pressure metamorphic conditions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The Lake Chany complex and nearby lakes in western Siberia (Russian Federation) were studied to constrain the S cycle in these terrestrial lake environments. Surface water chemistry was characterized by Na–SO4–Cl composition, comparable to other inland basins in semi-arid climatic zones associated with marine evaporite-bearing formations at depth. Dissolved sulfates showed elevated δ34S (up to +32.3‰). These values are quite distinct from those in similar saline lakes in northern Kazakhstan, the Aral Sea, Lake Barhashi, and a gypsum deposit in the Altai Mountains. The localized distribution of such a unique S isotopic signature in dissolved SO4 negates both aeolian and catastrophic flooding hypotheses previously suggested for the genesis of the dissolved salts. The probable source of the dissolved SO4 in Lake Chany basin is inherited from hidden saline groundwaters (whose location and origins remain unclear) from eastern Paleozoic ranges with Upper Devonian formations with heavy S isotope values. Post-depositional enrichment of heavy S in the dissolved SO4 from saline sediments may be caused by local activity of SO4-reducing bacteria under the ambient supply of electron donors (dissolved river load organic matter and decaying bacterial mats) in the lake complex. Such microbial processes can remove up to ca. 60% of SO4 from the system. Extensive and intensive evaporation of lake fluids, ca. 40%, was indicated by the progressive enrichment of δ18O values in meteoric water samples collected along the river and lake system. This evaporation process compensates the microbial loss of SO4 dissolved in the incoming river water.  相似文献   

15.
In this study, reservoir temperatures of Balıkesir geothermal waters in northwestern Turkey are estimated with various geochemical models. The geothermal fluids in the region are represented by Na–SO4, Na–HCO3 and Ca–HCO3 type waters with discharge temperatures up to 98°C. It was determined that the solubility of silica in most of the waters is controlled by the chalcedony phase. Equilibrium states of the Balıkesir thermal waters studied by means of Na–K–Mg–Ca diagram, mineral saturation calculations and activity diagrams in the system composed of Na2O–CaO–K2O–Al2O3–SiO2–H2O phases approximate a reservoir temperature of about 120°C. Most of the waters are found to be equilibrated with calcite, chalcedony ± quartz and muscovite at predicted temperature ranges, similar to those calculated from the chemical geothermometers.  相似文献   

16.
Alkali carbonates nyerereite, ideally Na2Ca(CO3)2 and gregoryite, ideally Na2CO3, are the major minerals in natrocarbonatite lavas from Oldoinyo Lengai volcano, northern Tanzania. They occur as pheno- and microphenocrysts in groundmass consisting of fluorite and sylvite; nyerereite typically forms prismatic crystals and gregoryite occurs as round, oval crystals. Both minerals are characterized by relatively high contents of various minor elements. Raman spectroscopy data indicate the presence of sulfur and phosphorous as (SO4)2− and (PO4)3− groups. Microprobe analyses show variable composition of both nyerereite and gregoryite. Nyerereite contains 6.1–8.7 wt % K2O, with subordinate amounts of SrO (1.7–3.3 wt %), BaO (0.3–1.6 wt %), SO3 (0.8–1.5 wt %), P2O5 (0.2–0.8 wt %) and Cl (0.1–0.35 wt %). Gregoryite contains 5.0–11.9 wt % CaO, 3.4–5.8 wt % SO3, 1.3–4.6 wt % P2O5, 0.6–1.0 wt % SrO, 0.1–0.6 wt % BaO and 0.3–0.7 wt % Cl. The content of F is below detection limits in nyerereite and gregoryite. Laser ablation ICP-MS analyses show that REE, Mn, Mg, Rb and Li are typical trace elements in these minerals. Nyerereite is enriched in REE (up to 1080 ppm) and Rb (up to 140 ppm), while gregoryite contains more Mg (up to 367 ppm) and Li (up to 241 ppm) as compared with nyerereite.  相似文献   

17.
A long mining history and unscientific exploitation of Jharia coalfield caused many environmental problems including water resource depletion and contamination. A geochemical study of mine water in the Jharia coalfield has been undertaken to assess its quality and suitability for domestic, industrial and irrigation uses. For this purpose, 92 mine water samples collected from different mining areas of Jharia coalfield were analysed for pH, electrical conductivity (EC), major cations (Ca2+, Mg2+, Na+, K+), anions (F, Cl, HCO3 , SO4 2−, NO3 ), dissolved silica (H4SiO4) and trace metals. The pH of the analysed mine water samples varied from 6.2 to 8.6, indicating mildly acidic to alkaline nature. Concentration of TDS varied from 437 to 1,593 mg L−1 and spatial differences in TDS values reflect the variation in lithology, surface activities and hydrological regime prevailing in the region. SO4 2− and HCO3 are dominant in the anion and Mg2+ and Ca2+ in the cation chemistry of mine water. High concentrations of SO4 2− in the mine water of the area are attributed to the oxidative weathering of pyrites. Ca–Mg–SO4 and Ca–Mg–HCO3 are the dominant hydrochemical facies. The drinking water quality assessment indicates that number of mine water samples have high TDS, total hardness and SO4 2− concentrations and needs treatment before its utilization. Concentrations of some trace metals (Fe, Mn, Ni, Pb) were also found to be above the desirable levels recommended for drinking water. The mine water is good to permissible quality and suitable for irrigation in most cases. However, higher salinity, residual sodium carbonate and Mg-ratio restrict its suitability for irrigation at some sites.  相似文献   

18.
Mineral Equilibria in the Searles Lake Evaporites, California   总被引:1,自引:0,他引:1  
The Searles Lake evaporites (late Quaternary) consist of salineand mud layers permeated by brines. Two mineral pairs (gaylussite-pirssonite,mirabilite-thenardite) are used as indicators of relative aH2othroughout the stratigraphic column. Variations are attributedmostly to changes in brine salinity and partly to temperature. These aH2o-sensitive minerals locally coexist with trona, nahcolite,burkeite, northupite, tychite, hanksite, and aphthitalite, whichare sensitive to both aH2o and aco. Such assemblages permitconstruction of schematic isothermal aH2o-aco, diagrams. Fieldboundary sequences are derived from both theoretical considerationsand observed assemblages; their slopes are determined by thestoichiometry of possible reactions. Predicted assemblages invariablyagree with observed assemblages. By means of these diagrams, present-day lateral and stratigraphicvariations in relative aH2o and aco2 in the deposit are reconstructed.They show that aH2o and aco2 vary independently. Many of thepresent activities reflect depositional conditions; some indicatepost-depositional events.  相似文献   

19.
The hydrochemistry of Great Salt Lake, Utah, has been defined for the historic period, 1850 through 1982, from published data combined with new observations. The water balance depends largely on river inflow, atmospheric precipitation onto the lake surface and evaporation. Input of the major solutes can best be accounted for by mixing dilute calcium-bicarbonate type river waters with NaCl-dominated hydrothermal springs.Prior to 1930, lake concentrations fluctuated inversely with lake volume in response to small climatic variations. Since then, salt precipitation and dissolution have significantly modified lake brine compositions and have led to density stratification and the formation of brine pockets of differing composition. Brine mixing has become an important component of brine evolution. We have used calculated evaporation curves with mineral precipitation and dissolution to clarify these processes.Pore fluids represent important storage for solutes. Solute profiles can be modeled by simple one-dimensional diffusion calculations. Short-term historic variations in lake composition affect shallow pore fluids in the upper 2 metres of sediment.  相似文献   

20.
The extinct Quaternary Kerimasi volcano located in the southern part of the Gregory Rift, northern Tanzania, contains both intrusive and extrusive calciocarbonatites. One carbonate mineral with a high content of Na and Ca has been found in a sample of volcanic carbonatite, which is probably a cumulate rock. On the basis of Raman spectroscopy and SEM/EDS, this mineral was identified as nyerereite, ideally Na2Ca(CO3)2. It occurs as solid inclusions up to 300 × 200 μm in size in magnetite and contains (wt. %) 25.4–27.4 Na2O, 26.0–26.8 CaO, 1.6–1.9 K2O, 0.6–1.8 FeO, 0.3–0.6 SrO, <0.4 BaO, 1.4–2.3 SO3, and 0.6–0.9 P2O5. The average mineral formula is (Na1.84K0.08)Σ1.92(Ca1.00Fe0.03Sr0.01)Σ1.04[(CO3)1.91(SO4)0.05(PO4)0.02]Σ1.98. A few inclusions in magnetite also contain calcite, which is considered here to be a late-stage, subsolidus mineral. The occurrence of nyerereite in carbonatite supports Hay’s (1983) idea that some of the extrusive carbonatites at the Kerimasi volcano were originally alkaline rich and contained both calcite and nyerereite as primary minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号