首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper discusses the clayrocks widespread at the Permian-Triassic boundary, which are mostly of volcanic origin. Volcanogenetic textures, structures and minerals such as high-temperature quartz are found in clayrocks at the Permian-Triassic boundary in many places. Thousands of microspherules have been collected from the Boundary clayrocks, many of which exhibit the typical features of the process from melting to cooling and solidification. indicating that they were formed by volcanic eruption or extraterrestrial impact. Volcanic effects on the Permian-Triassic mass extinction may be reflected in conodonts, algae and ammonoids. The Boundary clayrocks are found in many Permian-Triassic sections along the coast of Tethys. Their orighin remains to be studied.  相似文献   

2.
3.
A selection of evidence, including a carbon isotopic excursion, iridium anomaly, fullerenes (C60 and C70) with trapped noble gasses, microspherules and shocked quartz, is discussed in this paper. All the evidence in hand favors the hypothesis that the PTB event was probably related to an extraterrestrial cause, and the impact would lead to great physical change, including large volcanic eruptions. on the earths surface. The ET markers for the CTB event could be considered only as an example, and cannot be taken as a unique standard of an ET event.  相似文献   

4.
5.
Various orders of condensed sections are recognized in the Cambrian of North China Carbonate Platform. Study of comparative sedimentology proves that CS4-CS5 in the Changshanian age is the maximum sea flooding sediments in the Cambrian, regardless of the distribution, thickness, internal structure of the condensed section series and K2O abundance. It is a two-layered composite condensed section series, characterized by the enrichment of such elements as K, P, Mn, Ti, Co, V, Cr, Cu, Zr, Ni, Li, Th, La, Ce, Nd, Dy, Y, Sc and Be. The Changshanian maximum flooding event can be correlated on a global scale, and the corresponding sedimentary records are discovered in 26 intercontinental sections in N. Europe, N. America, and Tarim and the Yangtze Platform of China. Through detailed sedimentological research, meter-scale cycle analysis and Fischer plots, it is concluded that the Changshanian maximum flooding was a composite effect of the second-order eustacy superimposed by the third-and fourth-order eustacy,  相似文献   

6.
Based on the study of lithology, sedimentology and paleontology at the Permian-Triassic boundary in Liaotian, Northwestern Jiangxi Province, the sequence stratigraphy and depositional environments across the boundary are reconstructed. The top part of the Upper Permian Changxing Formation is composed of very thick-bedded ligh-colored dolomitic limestone formed in high deposition rate on carbonate ramp,which indacates a transgression systems tract (TST). The Lower Triassic Qinglong Formation shows continuous deposition with the underlying Upper Permian. The lower member of Qinglong Formation consists of calcareous shale, shelly limestome and dolomitic limestone with abundant bivalves (Claraia sp.) and trace fossills (Chondrites). The calcareous shale at the bottom of Lower Triassic indicates a calm deep water environment to form the condensed section (CS). The shelly limestome and dolomitic limeston with shell fossils, intraclast, algal ooide show clean but turbulent environment of carbonate ramp, which produce the deposition of highstand systems tract (TST).  相似文献   

7.
The demarcation of the Lower–Middle Triassic boundary is a disputed problem in global stratigraphic research. Lower–Middle Triassic strata of different types, from platform to basin facies, are well developed in Southwest China. This is favorable for the study of the Olenekian–Anisian boundary and establishing a stratotype for the Qingyan Stage. Based on research at the Ganheqiao section in Wangmo county and the Qingyan section in Guiyang city, Guizhou province, six conodont zones have been recognized, which can be correlated with those in other regions, in ascending order as follows: 1, Neospathodus cristagalli Interval-Zone; 2, Neospathodus pakistanensis Interval-Zone; 3, Neospathodus waageni Interval-Zone; 4, Neospathodus homeri-N. triangularis Assemblage-Zone; 5, Chiosella timorensis Interval-Zone; and 6, Neogongdolella regalis Range-Zone. An evolutionary series of the Early–Middle Triassic conodont genera Neospathodus-Chiosella-Neogongdolella discovered in the Ganheqiao and Qingyan sections has an intermediate type named Neospathodus qingyanensis that appears between Neospathodus homeri and Chiosella timorensis in the upper part of the Neospathodus homeri-N. triangularis Zone, showing an excellent evolutionary relationship of conodonts near the Lower–Middle Triassic boundary. The Lower–Middle Triassic boundary is located at 1.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Qingyan section, whereas this boundary is located 0.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Ganheqiao section. There exists one nearly 6-m thick vitric tuff bed at the bottom of the Xinyuan Formation in the Ganheqiao section, which is usually regarded as a lithologic symbol of the Lower–Middle Triassic boundary in South China. Based on the analysis of high-precision and high-sensitivity Secondary Ion Mass Spectrum data, the zircon age of this tuff has a weighted mean 206Pb/238U age of 239.0±2.9Ma (2s), which is a directly measured zircon U-Pb age of the Lower–Middle Triassic boundary. The Ganheqiao section in Wangmo county can therefore provide an excellent section through the Lower–Middle Triassic because it is continuous, the evolution of the conodonts is distinctive and the regionally stable distributed vitric tuff near the Lower–Middle Triassic boundary can be regarded as a regional key isochronal layer. This section can be regarded not only as a standard section for the establishment of the Qingyan Stage in China, but also as a reference section for the GSSP of the Lower–Middle Triassic boundary.  相似文献   

8.
Deposits of 10 volcanic events of 6 stages have been discovered by the authors after detailed field and lab studies of the Benxi and Taiyuan Formations in Shandong Province and its adjacent regions. They show certain temporal-spatial distribution characteristics. Volcanic fragments were probably derived from two different volcanic sources north and south of the North China Platform, while the magma of the two volcanic sources was probably derived from the lower crust. A new stratigraphic correlation scheme is put forward for the Benxi and Taiyuan Formations in this region on the basis of previous biostratigraphic work with the regionally widespread volcanic event layers as the marker bed for the isochronous stratigraphic correlation on a super-regional scale and in conjunction with the maximum transgressive event layers.  相似文献   

9.
On the basis of existing conodont data, the authors have studied the Late Permian-Early Triassic conodonts of different forms and biofacies in detail. Five conodont biofacies are recognized, from shallow to deep waters 1. Hindeodus conodont biofacies, 2. Pachycladina-Parachi rognathus conodont biofacies, 3. Gondolella -Hindeodus conodont biofacies, 4. Gondolella-Neospathodus conodont biofacies, and 5. Xaniognathus conodont biofacies. Considering the temporal and spatial changes of these conodont biofacies, 3 conodont bloprovinces have been divided. In light of the biofacies changes of each bioprovince, the authors also discuss, in this paper, the regularity of transgression-regression cycles of eastern Tethys and their possible relation to the mass biotic alternation.  相似文献   

10.
After the establishment of the global stratotype section and point (GSSP) of the Permian-Triassic boundary (PTB), the definition of the accessory section and point (ASP) of the terrestrial Permian-Triassic boundary (TPTB) is now on the agenda. However, all good TPTB sections so far known have the following shortcoming:(1) the exact TPTB horizon is difficult to define paleontologically with high-resolution, and (2) accurate correlation between marine and terrestrial PTBs in hard to attain. In order to enhance the understanding of the nature of the global life crisis in both the marine and terrestrial environments across the Paleozoic-Mesozoic transition, these shortcomings need to be addressed. In western Guizhou and eastern Yunnan, Southwest China, some fossiliferous PTB sections which include marine, paralic and terrestrial are well-developed, allowing bed-to-bed correlation of the PTB sequences. Fortunately, the marine PTB sequence in this area is almost the same as found at the Meishan Section, where the GSSP of the PTB is located, which may provide a reliable auxiliary marker for high-resolution demarcation of the TPTB. These features fund in estern Guizhou and eastern Yunnan make this area a good place to study the ASP of the TPTB, so we propose to study the ASP of the TPTB in this area.  相似文献   

11.
TECTONICac~ac~~RA~m~NERGoorU~YANG~~oafNdsreof~actTheho~ofUPperYangtzePlatformwascpetallizedandconsolidatedinthekiaogUanhernovernentofMeSoproterocoic(ca.1700mp.ItconstituteSthestableCentralSichuanconiinelhalnucleusandthecratonakin.Therearetabtabofcontinental~ionsurroUndingtheCentralSichuanconti~alnuCleusduring1700--800the.ThebordersofthecontinentalaCCretionareconcordantacthebordersof~nicandPalcogngnphy,andalsofo~theboundarybet~basin~formationS.InPaloocoic,tab~nicCycleScormspond…  相似文献   

12.
Meishan Section D in Changxing County, Zhejiang Province, China has been selected as the global stratotype of the Permian-Triassic boundary and various studies hav been done at the boundary but the gas chromatographic-mass spectrographic analysis of alkane biomarkers has not been investigated. This paper presents of results of a study of the biomarkers analyzed in a series of samples across the permian-Triassic boundary at both Meishan Section A and Section D. The results show that the overall concentration of alkane biomarkers in the Permian-Triassic boundary strata is high in Bed 26 while it is low in Bed 27. A variety of biomarker parameters demonstrate that the main sources of organic matter in the sediment are algae and bacteria and that the depositional enviroment varied from weakly oxidizing to reducing during the studied interval.  相似文献   

13.
The presence of a single Otoceras species (O.boreale), morphologically very variable, at the base of the Nekuchan Formation in Verkhoyansk, we believe, is to be obvious. Some morphological evidence leaves no doubt that two described morphs of O. boreale are s strictly corresponding sexual dimorphic pair. It is very likely that Kummel‘s idea that Canadian. O. concavum Tozer is an invalid species is truthful, considering the range of variability seen in larger Siberian and Himalayan Otoceras fauna. Just above the upper Tatarian Imtachan Formation, the six stages of ammonoid succession can be recognized within the lower part of the Nekuchan Formation in the Setorym River Section:(a) Otoceras boreale;(b) Otoceras boreale-Tompophiceras pascoei; (c) Otoceras boreale-Tompophiceras pascoei-Aldanoceras;(d)Tompophiceras pascoei-Otoceras boreale-Aldanoceras;(e) Tompophiceras morpheous-T.pascoei-Aldanoceras;(f) Tompophiceras more pheous-T.pascoei-Wordieoceras domokhotovi-Ophiceras transitorium;(g)Tompophiceras morpheous-T.pascoei, corresponding to the Otoceras boreale and Tompophiceras morpheous zones. In spite of the domination of Otocerataceae or Xenodiscaceae in both oif these zones and the presence of some Permian type conodonts in the lower part of the Otoceras boreale Zone, they seem to be early Induan in age on the basis of the following arguments:(1) in contrast to the underlying regressive type sediments of the Upper Tatarian Imtachan Formation, both the Otoceras boreale and the Tompophiceras morpheous zones of the lowermost part of the Nekuchan Formation correspond to the single transgressive cycle;(2)typical early Induan ammonoids (Ophiceras and Wordieoceras) have been recognized in the Tompophiceras morpheous zone; (3) all described ammonoid succession stages (a-g) are characterized by very gradual changes and therefore correspond to the different parts of the single zone or to the different zones of the same stage, but not to the different systems (Permian and Triassic);(4)elsewhere in the Boreal realm (Arctic Canada), the conodont index species for the base of the Triassic, Hindeodus parvus, has been reported from the Otoceras boreale Zone. A new scheme of the phylogeny for the Otocerataceae and its Induan-Olenekian offspring (Araxceratidae-Otoceratidae-Vavilovitidae n.fam.-Proptychitidae-Arctoceratidae) and Xenodiscaceae is offered.  相似文献   

14.
The qualities of petrology and paleobiology in Wuzhishan Section are studied.Several geo-chemical anomalies are recognized,such as:high rare earth element content ,high pyrite content and Ni anomalies.It could be correlated with Nandong Section in Xiangzhou County and the F/F boundary could be determined according to Ni anomalies.The results of the study indicate indicate that the geochemical anomaly plays an important role in stratigraphic correlation in non-fossil stratum.  相似文献   

15.
Theprimaryobjectofthesequencestratigraphyistorecoghzetherepetitivesequenceswithinstratigraphicsuccession,andtostudythetemporalandspatialdistriblltionofdepositionalsyStemsandstratalgeometries.TherearethreemajorparadigmSwhichcanbeusedtOdelineatethesequences:(1)delineatingdepositionalsequenCeSbyimportantunconfodritiesandtheircorrelatableconformitiesopsarnentierandVail,1988),(2)delineatinggeneticsequencesbymaximum--floodingsurfacesandtheircorrelatableconformities(Galloway,1989);and(3)delineating…  相似文献   

16.
The Zhejue Section is an excellent terrestrial permian-Triassic boundary (TPTB) section not only for its convenient accessibility and good outcrop, but also for its abundant fossils. In addition, there are two claystone beds that were formed by events across the Permian-Triassic boundary (PTB) at this section. The claystones provide a bridge for high-resolution correlation between marine and terrestrial PTBs. Another advantage is that the PTB at the Zhejue Section can be correlated with that of littoral and neritic facies by tracing estwards. Synthesized stratigraphic studies, including biostratigraphy, eventostratigraphy )susceptibilities and carbon isotopes across the TPTB, and microspherules found in the boundary claystones) and sequence stratigraphy, are carried out at this section.  相似文献   

17.
INTRODUCTIONTheoaf~ansed~arewidelydistributedinSouthetna,fromtheYanalCratondPborminnorthtocontinentalmarginofsoutheastern~insouth.ThePreSentpaperdiscussesmainlytheEarlyOrdovidan(thehoeofHirmtodontussimplex~tothebaseofNemopagngraciliszone,Wangatal.,1992)sealeVelchangeSandtheirworldwidecorrelationbasedonasyntheticalstudyofseqUenCe,bioshatiglaphyandaretratigl'aphy.Thisapproachwillfillinthe~instudyoftheOrdovidanofChina,andimprovethesu~ionandCO~ionofbio--,litho--andcbronostheigraphy.Mea…  相似文献   

18.
The Upper Permian Dalan Formation and the Lower Triassic Kangan Formation in the Persian Gulf area are mainly composed of shallow marine facies limestone and dolomite. Two subsurface-cored intervals were investigated in order to understand the original mineralogy and paleoceanic conditions. The decreasing trend of Sr concentration in these deposits shows that aragonite was precipitated during the Late Permian and then gradually changed to calcite toward the Permian–Triassic boundary (PTB). The dissolution rate of aragonite decreased from 60 m below the PTB toward the boundary, with the only exception at 10 m below the Permian-Triassic Boundary (PTB) due to the Permian–Triassic unconformity in this region. The increasing trend of Mg/Ca ratio in a global scale at the end-Permian time shows that the interpreted variation of mineralogy does not result from the change of this ratio. The increasing pCO2 and decreasing pH are considered to be the main controlling factors. The increase of Ca2+ at the end-Permian time due to the input of meteoric waters is too little to fully compensate this effect. A local maximum of the Si content just at the PTB confirms the input of runoff waters.  相似文献   

19.
20.
Samples were collected f5rom the Selong-Xishan Permian/Triassic boundary strata,Nyalam County in southern Tibet and systematically analyzed for their rare-earth elements(REE) and trace elements such as U,Th,Sr,Ba,Sc,Ta,Hf,Rb,Cs,Co,Ni,Cr,As and others with emphasis put on the distribution patterns of rare-earth elements and the variation of trace element contents along the Permial/Triassic boundary section.On this basis a discussion will be made of the paleo-ocean depositional environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号