首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three forms of fault are recognized in Entrada and Navajo Sandstones in the San Rafael Desert, southeastern Utah; deformation bands, zones of deformation bands, and slip surfaces. Small faults occur asdeformation bands, about one millimeter thick, in which pores collapse and sand grains fracture, and along which there are shear displacements on the order of a few millimeters or centimeters. Two or more deformation bands adjacent to each other, which share the same average strike and dip, form azone of deformation bands. A zone becomes thicker by addition of new bands, side by side. Displacement across a zone is the sum of displacements on each individual band. The thickest zones are about 0.5 m and total displacement across a thick zone rarely exceeds 30 cm. Finally,slip surfaces, which are through-going surfaces of discontinuity in displacement, form at either edge of zones of highly concentrated deformation bands. In contrast with individual deformation bands and zones of deformation bands, slip surfaces accommodate large displacements, on the order of several meters in the San Rafael Desert.The sequence of development is from individual deformation bands, to zones, to slip surfaces, and each type of faulting apparently is controlled by somewhat different processes. The formation of zones apparently involves strain hardening, whereas the formation of slip surfaces probably involves strain softening of crushed sandstone.  相似文献   

2.
Seismogeological investigations conducted in the Erzin-Agar-Dag fault zone (the Great Lakes segment) revealed traces of paleoseismogenic deformation. A detailed on-land investigation of the Tatur-Tolga and the Hairakan paleoseismic dislocations (PSD) found a dominant left lateral type of movement. The amplitudes of one-act displacements on the faults vary between 2–3 and 6–7 m (horizontal) and within 1.5–2 m (vertical). Along with the parameters of one-act horizontal movements of a few meters, we found an accumulated amplitude of strike-slip movement of a few tens to hundreds of meters. Based on the parameters of seismotectonic deformations, the magnitudes of the respective paleoearthquakes are inferred to have been 6.6 to 7.9.  相似文献   

3.
We present new in situ observations of systematic asymmetry in the pattern of damage expressed by fault zone rocks along sections of the San Andreas, San Jacinto, and Punchbowl faults in southern California. The observed structural asymmetry has consistent manifestations at a fault core scale of millimeters to meters, a fault zone scale of meters to tens of meters and related geomorphologic features. The observed asymmetric signals are in agreement with other geological and geophysical observations of structural asymmetry in a damage zone scale of tens to hundreds of meters. In all of those scales, more damage is found on the side of the fault with faster seismic velocities at seismogenic depths. The observed correlation between the damage asymmetry and local seismic velocity structure is compatible with theoretical predictions associated with preferred propagation direction of earthquake ruptures along faults that separate different crustal blocks. The data are consistent with a preferred northwestward propagation direction for ruptures on all three faults. If our results are supported by additional observations, asymmetry of structural properties determined in field studies can be utilized to infer preferred propagation direction of large earthquake ruptures along a given fault section. The property of a preferred rupture direction can explain anomalous behavior of historic rupture events, and may have profound implications for many aspects of earthquake physics on large faults.  相似文献   

4.
Abstract   Magnetic susceptibility and the anisotropy of magnetic susceptibility were measured on an 800-cm-thick succession of cumulate gabbro in the Sadm area of the Oman ophiolite. The section contained three distinct cumulate units. The susceptibility tends to decrease upward in each from a melanocratic layer (several tens of centimeters thick) to a leucocratic layer (a few meters thick). The susceptibility decreases in accordance with the decreasing number of magnetite grains, which are the alteration product mainly of olivine minerals. This suggests the cyclic downward accumulation of olivine in the cumulate gabbro. The apparent strain deduced from the patterns of magnetic and grain fabrics was the result mostly of simple shear, so that the layering of gabbro is understood to be formed primarily by a crystal cumulus process followed by simple shear deformation.  相似文献   

5.
The surface ruptures produced by the 2016 MW7.8 Karkoura earthquake, New Zealand are distributed in a belt with~170km long and~35km wide, trending generally in the NE-SW direction. There are at least 12 faults on which meter-scale displacements are identified and they were formed across two distinct seismotectonic provinces with fundamental different characteristics(Hamling et al., 2017; Litchfield et al., 2017). Although the trending directions of the seismic surface ruptures vary greatly at different locations, the ruptured faults can be generally divided into two groups with the NE to NEE direction and the NNW to N direction, respectively. The faults in the NNW-near NS direction are nearly parallel with 40~50km apart and featured by reverse movement with the maximum displacement of 5~6m. The faults in the NE-NNE direction, with the maximum of 25~30km apart are not continuous and featured by the dextral strike slip with the largest displacement of 10~12m. Even if some faults along the NE-NEE direction are end to end connected, their strikes differ by about 30°. The combination styles of the strike-slip fault surface ruptures along the NE-NEE direction can be merged into 3 categories, including en-echelon, bifurcation and parallel patterns. The scales of the fault surface ruptures with the same structural style could be obviously different in different areas, which results in significant changes in the widths of deformation zone, from tens of meters to hundreds of meters. En-echelon distributed surface rupture(section)can appear as a combination belt of meter-scale to dozens of meter-scale shear fracture with bulge and compressional shear fractures, and also can be characterized by the combination of the left-step en-echelon tensile shear fractures with a length of more than one hundred meters. The step-overs between surface rupture sections are clearly different in sizes, which can be dozens of meters, hundreds of meters to several kilometers. The spacing between parallel surface ruptures can be several meters, dozens of meters to several kilometers. Besides, as one of the prominent characteristics, the seismic surface ruptures caused by the Karkoura earthquake broke through the known distribution pattern of active faults. The surface ruptures can occur either on the previously thought inactive or unmapped faults, or break through the distribution range of previously realized active faults in the striking or lateral direction. The basic features about the distribution and widths of the surface ruptures induced by the 2016 MW7.8 Karkoura earthquake, New Zealand presented in this paper might be helpful for understanding some seismic problems such as complex corresponding relationship between the active faults and the deep seismogenic structure, and the necessary measurements for engineering crossing active faults.  相似文献   

6.
SeaBeam multibeam bathymetry obtained during cruise SO-69 of research vessel (R/V) Sonne defines the segmentation and structure of ∼ 300 km of the Mariana back-arc spreading center south of the Pagan fracture zone at 17°33'N. Eight ridge segments, ranging from 14 to 64 km in length, are displaced as much as 2.7–14.5 km by both right- (predominantly) and left-lateral offsets and transform faults. An axial ridge commonly occupies the middle portion of the rift valley and rises from 200 to 700 m above the adjacent sea floor, in places shoaling to a water depth of 3200 m. An exception is the 60-km-long segment between 16°58' and 17°33'N where single peaks only a few tens of meters high punctuate the rift axis. Photographic evidence and rock samples reveal the presence of mostly pillow lavas outcropping on the axial ridges or peaks whereas the deeper parts of the rift valley floor (max. depth 4900 m) are heavily to totally sedimented. Abundant talus ramps along fault scarps testify to ongoing disruption of the crust. Lozenge-shaped collapse structures are covered by layers of sediment up to tens of centimeters thick on the rift valley floor. The presence of discrete volcanic ridges in the southern Mariana back-arc spreading region suggests that emplacement of oceanic crust at this slow spreading center occurs by `multi-site' injection of magma. Along-axis variations in length, crestal depth, and size of the axial ridges can be best explained by different stages in the cyclicity of magma supply along-axis.  相似文献   

7.
野外地质调查结果显示,断层带常富集碳质.断层带中碳的分布结构是影响断层带电导率特征的一种重要参数.本文在室温、室内湿度和2MPa正应力条件下,对不同石墨含量(3,5,6和7wt%)的石英-石墨混合断层泥模拟样品开展了滑动速率介于500μm·s-1~1m·s-1的摩擦实验及相应的电导率测量,以期研究断层运动对碳分布结构的影响以及断层带电性特征对碳含量及分布的响应情况.结果显示,摩擦滑动能够显著地改变样品的电性特征(电导率大小及其各向异性).在平行滑动面方向(径向),样品电导率随着滑动位移的增加快速增加,在滑动约数十厘米之后,其电导率基本达到稳定状态;在垂直滑动面方向(轴向),样品电导率基本不随摩擦滑动速率和滑动距离而变化.SEM显微结构观测显示,摩擦滑动所引起的电导率各向异性直接反映了石墨分布结构的变化.该研究结果深化了对地震断裂带浅部电性特征的认识,为野外断层带大地电磁测深资料的解释提供了约束,同时对于了解含碳断层的力学性质和弱矿物相在剪切变形中的分布特征及其演化过程等方面也具有重要意义.  相似文献   

8.
Structure and deformational character of strike-slip fault zones   总被引:5,自引:0,他引:5  
Strike-slip fault zones observed either in the field or in model experiments generally consist of several subparallel faults which make these zones complicated in geometry and kinematics. The geometry of a strike-slip fault or shear zone is dependent on arrangement (pinnate or en echelon), on step (left step or right step), and on the rank )smaller faults within larger faults) of the subparallel fault. The relations and interactions of these three factors create a variety of dynamic circumstances and tectonic settings within the strike-slip fault zones. These include pull-aparts in the release area between subparallel faults, push-ups in the jogs where the subparallel faults overlap, and pivotal movements, or rotation, of single faults along the whole fault zone. Each kind of tectonic setting is in itself characteristic, each setting consists of many subtypes, which are controlled chiefly by the geometric parameters of the subparallel faults. One of the most important phenomena revealed in the field work is two different kinds of evolution of strike-slip fault zones: one is the evolution of a zone with a tensile component, which is related to the growth of rock bridges, and the other, of one with a compressional component, which develops by the destruction of rock bridges. In this paper we discuss, on the basis of recent research on four strike-slip fault zones in China, the essential characteristics of strike-slip faults and the possible causes of the observed structural phenomena. Attention is focussed on the deformation, development, and distribution of horizontal displacements within strike-slip fault zones.  相似文献   

9.
塔什库尔干断裂带北段木吉河断层运动特征   总被引:1,自引:0,他引:1  
塔什库尔干断裂带是由多条运动性质不同的次级断层组成。该断裂带北段的木吉河断层运动特征以逆冲为主,兼有右旋走滑分量。该断层全长20km左右,全新世以来仍有较强活动,断错了全新世中晚期的地貌面,对吉如吉能沟西岸的阶地变形进行测量,得到Ⅰ、Ⅱ阶地的垂直断错量分为10m和14m左右。通过对变形阶地的年代测定,计算得到全新世中期以来,木吉河断层的平均垂直滑动速率为1.8—2.1mm/a,所造成的南北向地壳缩短为1.1~1.3mm/a。  相似文献   

10.
Earthquakes in central Italy, and in other areas worldwide, often nucleate within and rupture through carbonates in the upper crust. During individual earthquake ruptures, most fault displacement is thought to be accommodated by thin principal slip zones. This study presents detailed microstructural observations of the slip zones of the seismically active Tre Monti normal fault zone. All of the slip zones cut limestone, and geological constraints indicate exhumation from <2?km depth, where ambient temperatures are ?100°C. Scanning electron microscope observations suggest that the slip zones are composed of 100% calcite. The slip zones of secondary faults in the damage zone contain protocataclastic and cataclastic fabrics that are cross-cut by systematic fracture networks and stylolite dissolution surfaces. The slip zone of the principal fault has much more microstructural complexity, and contains a 2?C10?mm thick ultracataclasite that lies immediately beneath the principal slip surface. The ultracataclasite itself is internally zoned; 200?C300???m-thick ultracataclastic sub-layers record extreme localization of slip. Syn-tectonic calcite vein networks spatially associated with the sub-layers suggest fluid involvement in faulting. The ultracataclastic sub-layers preserve compelling microstructural evidence of fluidization, and also contain peculiar rounded grains consisting of a central (often angular) clast wrapped by a laminated outer cortex of ultra-fine-grained calcite. These ??clast-cortex grains?? closely resemble those produced during layer fluidization in other settings, including the basal detachments of catastrophic landslides and saturated high-velocity friction experiments on clay-bearing gouges. An overprinting foliation is present in the slip zone of the principal fault, and electron backscatter diffraction analyses indicate the presence of a weak calcite crystallographic preferred orientation (CPO) in the fine-grained matrix. The calcite c-axes are systematically inclined in the direction of shear. We suggest that fluidization of ultracataclastic sub-layers and formation of clast-cortex grains within the principal slip zone occurred at high strain rates during propagation of seismic ruptures whereas development of an overprinting CPO occurred by intergranular pressure solution during post-seismic creep. Further work is required to document the range of microstructures in localized slip zones that cross-cut different lithologies, and to compare natural slip zone microstructures with those produced in controlled deformation experiments.  相似文献   

11.
Fault zones are an important control on fluid flow, affecting groundwater supply, contaminant migration, and carbon storage. However, most models of fault seal do not consider fault zone cementation, despite the recognition that it is common and can dramatically reduce permeability. In order to study the field-scale hydrogeologic effects of fault zone cementation, we conducted a series of aquifer pumping tests in wells installed within tens of meters of the variably cemented Loma Blanca Fault, a normal fault in the Rio Grande Rift. In the southern half of the study area, the fault zone is cemented by calcite; the cemented zone is 2-8 m wide. In the center of the study area, the cemented fault zone is truncated at a buttress unconformity that laterally separates hydrostratigraphic units with a ∼40X difference in permeability. The fault zone north of the unconformity is not cemented. Constant rate pumping tests indicate that where the fault is cemented, it is a barrier to groundwater flow. This is an important demonstration that a fault with no clay in its core and similar sediment on both sides can be a barrier to groundwater flow by virtue of its cementation; most conceptual models for the hydrogeology of faults would predict that it would not be a barrier to groundwater flow. Additionally, the lateral permeability heterogeneity across the unconformity imposes another important control on the local flow field. This permeability discontinuity acts as either a no-flow boundary or a constant head boundary, depending on the location of pumping.  相似文献   

12.
Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-plastic transition. As the bottom of seismogenic fault, the dynamic characteristics of the frictional-plastic transition zone and plastic zone are very important for the seismogenic fault during seismic cycles. Granite is the major composition of the crust in the brittle-plastic transition zone. Compared to calcite, quartz, plagioclase, pyroxene and olivine, the rheologic data of K-feldspar is scarce. Previous deformation studies of granite performed on a quartz-plagioclase aggregate revealed that the deformation strength of granite was similar with quartz. In the brittle-plastic transition zone, the deformation characteristics of granite are very complex, temperature of brittle-plastic transition of quartz is much lower than that of feldspar under both natural deformation condition and lab deformation condition. In the mylonite deformed under the middle crust deformation condition, quartz grains are elongated or fine-grained via dislocation creep, dynamic recrystallization and superplastic flow, plagioclase grains are fine-grained by bugling recrystallization, K-feldspar are fine-grained by micro-fractures. Recently, both field and experimental studies presented that the strength of K-feldspar is much higher than that of quartz and plagioclase. The same deformation mechanism of K-feldspar and plagioclase occurred under different temperature and pressure conditions, these conditions of K-feldspar are higher than plagioclase. The strength of granite is similar to feldspar while it contains a high content of K-feldspar. High shear strain experiment studies reveal that granite is deformed by local ductile shear zones in the brittle-plastic transition zone. In the ductile shear zone, K-feldspar is brittle fractured, plagioclase are bugling and sub-grain rotation re-crystallized, and quartz grains are plastic elongated. These local shear zones are altered to local slip-zones with strain increasing. Abundances of K-feldspar, plagioclase and mica are higher in the slip-zones than that in other portions of the samples (K-feldspar is the highest), and abundance of quartz is decreased. Amorphous material is easily formed by shear strain acting on brittle fine-grained K-feldspar and re-crystallized mica and plagioclase. Ductile shear zone is the major deformation mechanism of fault zones in the brittle-plastic transition zone. There is a model of a fault failed by bearing constant shear strain in the transition zone:local shear zones are formed along the fractured K-feldspar grains; plagioclase and quartz are fine-grained by recrystallization, K-feldspar is crushed into fine grains, these small grains and mica grains partially change to amorphous material, local slip-zones are generated by these small grains and the amorphous materials; then, the fault should be failed via two ways, 1)the local slip-zones contact to a throughout slip-zone in the center of the fault zone, the fault is failed along this slip-zone, and 2)the local slip-zones lead to bigger mineral grains that are in contact with each other, stress is concentrated between these big grains, the fault is failed by these big grains that are fractured. Thus, the real deformation character of the granite can't be revealed by studies performing on a quartz-plagioclase aggregate. This paper reports the different deformation characters between K-feldspar, plagioclase and quartz under the same pressure and temperature condition based on previous studies. Then, we discuss a mode of instability of a fault zone in the brittle-plastic transition zone. It is still unclear that how many contents of weak mineral phase(or strong mineral phase)will control the strength of a three-mineral-phase granite. Rheological character of K-feldspar is very important for study of the deformation characteristic of the granitic rocks.  相似文献   

13.
Shear zones in outcrops and core drillings on active faults commonly reveal two scales of localization, with centimeter to tens of meters thick deformation zones embedding much narrower zones of mm-scale to cm-scale. The narrow zones are often attributed to some form of fast instability such as earthquakes or slow slip events. Surprisingly, the double localisation phenomenon seem to be independent of the mode of failure, as it is observed in brittle cataclastic fault zones as well as ductile mylonitic shear zones. In both, a very thin layer of chemically altered, ultra fine grained ultracataclasite or ultramylonite is noted. We present an extension to the classical solid mechanical theory where both length scales emerge as part of the same evolutionary process of shearing the host rock. We highlight the important role of any type of solid-fluid phase transitions that govern the second degree localisation process in the core of the shear zone. In both brittle and ductile shear zones, chemistry stops the localisation process caused by a multiphysics feedback loop leading to an unstable slip. The microstructural evolutionary processes govern the time-scale of the transition between slow background shear and fast, intermittent instabilities in the fault zone core. The fast cataclastic fragmentation processes are limiting the rates of forming the ultracataclasites in the brittle domain, while the slow dynamic recrystallisation prolongs the transition to ultramylonites into a slow slip instability in the ductile realm.  相似文献   

14.
Deviations of slip vector azimuths of interplate thrust earthquakes from expected plate convergence directions at oblique subduction zones provide kinematic information about the deformation of forearcs and indirect evidence on the dynamics of the plate boundary. A global survey of slip vectors at major trenches of the world reveals a large variability in the kinematic response of forearcs to shear produced by oblique convergence. The variability in forearc deformation inferred from slip vector deflections is suggested to be caused by variations in forearc rheology rather than in the stresses acting on subduction zone thrust faults. Estimated apparent macroscopic rheologies range from elastic to perfectly plastic (or viscous). Forearc rheologies inferred from slip vectors do not correlate with age of the subducting lithosphere, but continental forearcs or old arcs appear to deform less than oceanic or young arcs. The inferred absence of forearc deformation at continental arcs from this study is counter to inferences drawn from compiled geologic information on forearc faults. Correlations of the apparent forearc rheology with backarc spreading, convergence rate, slab dip, arc curvature, and downdip length of the thrust contact are poor. However, great subduction zone earthquakes occur where forearcs are apparently more elastic (i.e., less deformed by oblique convergence), which suggests that the mechanical properties of forearcs rather than stress magnitude on thrust faults control both the kinematic behavior of forearcs and where great subduction zone earthquakes occur.  相似文献   

15.
Biased monitoring of fresh water-salt water mixing zone in coastal aquifers   总被引:2,自引:0,他引:2  
In coastal aquifers, significant vertical hydraulic gradients are formed where fresh water and underlying salt water discharge together upward to the seafloor. Monitoring boreholes may act as "short circuits" along these vertical gradients, connecting between the higher and the lower hydraulic head zones. When a sea tide is introduced, the fluctuations of both the water table and the depth of the mixing zone are also biased due to this effect. This problem is intensified in places of long-screen monitoring boreholes, which are common in many places in the world. For example, all approximately 500 boreholes of the fresh water-salt water mixing zone in the coastal aquifer of Israel are installed with 10 to 50 m long screens. We present field measurements of these fluctuations, along with a three-dimensional numerical model. We find that the in-well fluctuation magnitude of the mixing zone is an order of magnitude larger than that in the porous media of the actual aquifer. The primary parameters that affect the magnitude of this bias are the anisotropy of the aquifer conductivity and the borehole hydraulic parameters. With no sea tide, borehole interference is higher for the anisotropic case because the vertical hydraulic gradients are high. When tides are introduced, the amplitude of the mixing zone fluctuation is higher for the isotropic case because the overall effective hydraulic conductivity is greater than the conductivity in the anisotropic case. In the aquifer, the fresh water-salt water mixing zone fluctuations are dampened, and tens of meters inland from the shoreline, the fluctuations are on the order of few centimeters.  相似文献   

16.
In coseismic surface rupture zones caused by the 2008 Mw 7.9 Wenchuan earthquake, some thin-layered fault gouges with strong deformation were observed in different locations. In this paper, fault gouge samples were taken as research objects from the Bajiaomiao village in the south-west segment of the principal rupture and the Heshangping village and the Shaba village in the north-east segment of the principal rupture where larger displacements were measured. Fabric characteristics of the fault gouge samples and the morphologies and structures of micro-nanometer grains on Y-shear surfaces were then analyzed by using a stereoscope and SEM. Observation results showed that obvious Y- and R-shears and obvious scratches were well developed in coseismic gouges caused by the 2008 Wenchuan earthquake. Micro-nanometer grains in the fault gouge of the Wenhcuan earthquake were formed mainly due to breaking, grinding, and powdering of fault slipping friction surface. Heat caused by fault slipping (maybe also including heat caused by thermal decomposition) played an important role in producing micro-nanometer sized grains. Existence occurrence state of micro-nanometer sized grains on fault slip surface includes singled grains and their complexes with shapes of ball, silkworm, pancake and mass. The structures mainly include dispersed and close-packed structures besides a few of striped and layered structures. All these structures were formed at the extreme unbalance conditions caused by rapid deforming during an earthquake. There always exist some voids between structures due to loosely contact. Only alienated grains are included in the stripped structure. But there are some singled grains with no deformation in dispersed and close-packed structures besides complexes of grains with morphologies of ball, silkworm, pancake and mass. The striped and close-packed structures are the results of plastic deformation, and the dispersed and layered structures are the results of brittle deformation whereas loose contact of different structures was caused mainly by discontinuous dynamic friction (fault stick-slipping). The structures of the micro-nanometer sized grains in coseismic fault gouge caused by the Wenchuan earthquake are the geological records of seismic fault slipping (it is not pseudotachylite), which could be used as an index of paleo-seismic events.  相似文献   

17.
Cores from two of 13 U.S. Geological Survey research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of the convective geothermal reservoir. Variations in porosity and matrix permeability observed in the Y-5 and Y-8 cores are primarily controlled by lithology. Y-8 intersects three distinct lithologies: volcaniclastic sandstone, perlitic rhyolitic lava, and non-welded pumiceous ash-flow tuff. The sandstone typically has high permeability and porosity, and the tuff has very high porosity and moderate permeability, while the perlitic lava has very low porosity and is essentially impermeable. Hydrothermal self-sealing appears to have generated localized permeability barriers within the reservoir. Changes in pressure and temperature in Y-8 correspond to a zone of silicification in the volcaniclastic sandstone just above the contact with the perlitic rhyolite; this silicification has significantly reduced porosity and permeability. In rocks with inherently low matrix permeability (such as densely welded ash-flow tuff), fluid flow is controlled by the fracture network. The Y-5 core hole penetrates a thick intracaldera section of the 0.6-Ma Lava Creek ash-flow tuff. In this core, the degree of welding appears to be responsible for most of the variations in porosity, matrix permeability, and the frequency of fractures and veins. Fractures are most abundant within the more densely welded sections of the tuff. However, the most prominent zones of fracturing and mineralization are associated with hydrothermal breccias within densely welded portions of the tuff. These breccia zones represent transient conduits of high fluid flow that formed by the explosive release of overpressure in the underlying geothermal reservoir and that were subsequently sealed by supersaturated geothermal fluids. In addition to this fracture sealing, hydrothermal alteration at Yellowstone appears generally to reduce matrix permeability and focus flow along fractures, where multiple pulses of fluid flow and self-sealing have occurred.  相似文献   

18.
Abstract Pressure and temperature (P–T) conditions of mélange formation are estimated from fluid inclusions within “syn‐mélange” veins developed in the necks of boudins of sandstone blocks in the mélange of the Shimanto accretionary complex, south‐west Japan. The mélange records décollement‐zone processes. P–T conditions are in the range of 81 (+15) to 235 (±18) MPa and 150 (±25) to 220 (±31)°C. Assuming a constant fluid‐pressure to lithostatic‐pressure ratio for each data set, we estimate a P–T gradient of between 10.0°C/km (+0.2/?1.5) (lithostatic pressure) and 4.2°C/km (+0.1/?0.9) (hydrostatic pressure) from these results. The estimated lithostatic P–T gradient is much lower than that calculated from the age of the subducting oceanic plate. The estimated P–T conditions suggest that the mélange was formed within the seismogenic zone (hypothesized from thermal modeling), although the deformation mechanism of mélange (i.e. dominant diffusive mass transfer mainly in shale matrix with minor brittle breakage mainly in sandstone blocks) does not show evidence of seismic deformation. In addition, at the time of syn‐mélange vein formation, a shale matrix of mélange has injected into the vein, which indicates a ductile deformation of shale. A possible explanation for this discrepancy is that the mélange was formed during the interseismic period.  相似文献   

19.
用多种数据构建2008年汶川特大地震同震位移场   总被引:2,自引:2,他引:0  
本文主要以GPS、精密水准观测和卫星SAR遥感图像分析2008年汶川特大地震同震位移特征.GPS数据包括:(1)四川盆地和川西高原地区各类国家等级GPS网点复测;(2)沿破裂带国家天文大地网GPS复测.前者推算的同震位移测定精度优于2 cm,后者6~8 cm.SAR遥感资料包括:(1)ALOS 卫星升轨相位干涉图像,精度优于8 cm;(2)ALOS和ENVISAT卫星影像合成的三维位移图,精度优于0.5 m.同震位移场显示,断层下盘(四川盆地)变形总体呈扇形集中指向震中,断层上盘(龙门山)变形总体上呈逆时针旋转态势,最大的实测水平位移5.5 m.汶川、理县、茂县等地测站位移指向破裂带方向,而平武、青川等地测站逐渐转变为平行,乃至远离破裂带方向,与汶川地震逆冲兼走滑的破裂特征一致.断层上盘大幅隆升,下盘靠近断层的区域以下沉为主,远场表现为幅度很小的隆升,垂直升降区域间,有一条与龙泉山断裂带平行的升降过渡带,调节龙泉断层的应力状态.用实测变形场检验多个地震波破裂模型表明,近场(距离断层50 km) 模型形变准确度可达40~50 cm, 远场精度优于5 cm.  相似文献   

20.
新疆特克斯-昭苏地震断层的发现及有关问题的讨论   总被引:1,自引:0,他引:1       下载免费PDF全文
1986年作者在特克斯-昭苏盆地首次发现长70公里、最大垂直和水平位移均达8米的地震断裂带和地震形变现象,并认为是1716年地震时形成的。地震断裂带的展布和运动方式,与科博河-昭管处断裂相一致。特克斯断裂带是一条复杂的断裂带,它由多条断裂组成。1716年地震表明该断裂带具有新的活动性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号