首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 74 毫秒
1.
利用FY-2H, Aqua, CALIPSO(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation)和GPM(Global Preciptation Measurement)卫星产品, 对比同在浙江温岭沿海登陆且路径相似的台风利奇马(1909)和台风摩羯(1814), 分析其发展过程中云系水平、垂直结构特征以及登陆前台风三维结构特征。结果表明: 台风眼区是否可见、台风云系的螺旋明显程度、最强降水中心的形状变化、螺旋雨带区南北侧云顶高度的差异均是台风发展强弱的重要标志。台风发展成熟阶段云顶高度最大位于台风眼附近。台风登陆前, 台风越强, 单层云占比越高, 多层云占比越少; 台风越强, 光学厚度越大; 台风云系类别主要是深对流云和卷云, 成分以非定向冰为主; 螺旋雨带区云系的云底高度及厚度与台风发展强弱相关; 同一通道下高低亮温区的面积、台风的降水类型、三维降水结构中的对流柱长度和数量、垂直方向上的降水率均可作为台风发展强弱的依据。  相似文献   

2.
利用自动气象站资料、FY-2G卫星TBB(black body temperature)产品、多普勒雷达组网资料和NCEP FNL分析资料对超强台风利奇马(1909)极端强降雨观测特征、热动力结构演变和水汽输送进行分析。结果表明:此次台风大暴雨覆盖华东大部,极端强降雨区(过程雨量超过350 mm)位于浙江东部和山东中部,21个国家级气象站突破日雨量历史极值;副热带高压、台风和西风槽相互作用以及华东沿海强劲东南风急流为台风利奇马(1909)长时间维持与强降雨发生提供了有利的环境条件。浙江东部极端强降雨主要由发展极为强盛的台风本体产生,垂直深厚涡旋系统强烈的上升运动和台风眼墙区密实的深对流系统导致雨强大且降雨集中;而山东中部极端强降雨则与台风非对称结构演变和冷空气侵入密切相关。倒槽锋生、台风北侧3条螺旋雨带北移汇入及地形迎风坡处的列车效应导致山东中部远距离暴雨发生,随着500 hPa干冷空气从低层不断侵入,在台风西侧118°E附近形成向西倾斜的假相当位温锋区,暖湿气流爬升引发第2阶段稳定性降雨。  相似文献   

3.
郭晞  仇欣  李超  沈阳  陈圣劼 《气象科学》2020,40(3):315-324
采用CMISS/MIMIC微波卫星产品,TCGP数据集和NECP/NCAR全球再分系资料,详细分析了超强台风"利奇马"(1909)的双眼墙过程中对流结构及动力结构的协同变化特征。结果表明:(1)在双眼墙形成前,"利奇马"内核对流雨带对称性增加,呈现环状包裹眼墙。在环状雨带和眼墙之间,下沉气流配合相对湿度干区在此发展,致使该区域对流受到抑制,最终发展为下沉晴空Moat区。而在内核环状对流雨带处,上升运动中心和次极大入流中心发展,增大绝对涡度的内输,促进次极大风速中心的形成,并有利于深对流发展。最终环状对流带发展成为外眼墙;(2)双眼墙结构形成后,次眼墙及其相伴的次级环流和对流雨带均增强并且内缩,Moat区变狭窄,对流抑制作用增强。相反,内眼墙对流强度及次级环流减弱,绝对涡度内输不足,导致"利奇马"强度减弱。  相似文献   

4.
基于TRMM卫星降雨资料、MERRA-2卫星位势高度、风速、垂直速度等资料,对1909号台风"利奇马"的移动特征及其引发浙江、江苏、山东等地暴雨进行诊断分析.分析结果发现,台风"利奇马"是北上型台风,移动路径主要受副高与1910号台风"罗莎"等系统影响.在北上的过程中,由于台风倒槽与西风槽携带的冷空气配合,且存在大量不稳定能量,引发了此次强降水过程.此外,低空急流及西风槽为降水提供了良好的动力上升条件,南海西南季风与台风"罗莎"是台风"利奇马"充沛的水汽与能量来源,为暴雨提供了良好的水汽条件.  相似文献   

5.
利用CIMSS/MIMIC资料、雷达资料、国家气象中心台风定位定强资料,通过集成微波图像判断台风双眼墙形成,分析"利奇马"长达33. 5 h的双眼墙结构特征。结果表明:(1)受宫古岛附近岛屿地形影响和螺旋环流结构调整,内外眼墙对流出现两次偏移;(2)当台风强度较强且稳定时,内眼墙环流的偏移不会引起台风强度的变化,反而因台风强度稳定使内眼墙环流重新组织;(3)雷达回波显示内眼墙有3 h周期的生消发展过程,非对称摩擦效应决定了内外眼墙之间的对流交换主要发生在moat区西北部。  相似文献   

6.
2019年第9号台风“利奇马”(1909)在8月9—11日影响上海期间造成了严重的风雨影响。基于ERA5逐小时再分析资料和上海区域高时空分辨率的地面观测资料,采用非地转Q矢量分解等方法诊断分析了此次强降水成因。结果表明,台风“利奇马”在上海造成的强降水主要来自台风东侧的螺旋雨带。强降水区东南西北各边界的相对湿度在垂直方向上随时间的变化差异明显,水汽的垂直输送和大气整层水汽含量在台风强降水中起重要作用。进一步利用非地转Q矢量分解方法揭示了东边界的大尺度和北边界的中尺度系统在强降水中起主要作用。台风登陆时呈现出整层大气被抬升之后最大强迫中心由高层向低层下传的态势,且此下传效应中尺度比大尺度强迫更加明显,从而有利于强降水的发生。  相似文献   

7.
张江涛  耿飞  于晓龙 《气象科学》2020,40(6):802-809
为了更准确计算台风的引导气流,基于相关系数计算方法,评估了各层环境风与台风移动速度的相关性。结果表明,剔除相关性差的低层环境风后,计算得到的引导气流与台风移动的一致性有所提高;引导气流分量的峰值谷值在时间上滞后于台风的峰谷值;低层风之所以与台风相关性差或与低空急流和地形的干扰有关。针对性调整引导气流计算方法,有助于提高引导气流与台风移动速度的相关性。  相似文献   

8.
利用常规气象观测资料、台风最佳路径数据集资料、地面-卫星-雷达三源融合逐小时降水产品(0.05°×0.05°)、FY-2G云顶亮温(0.1°×0.1°)、NCEP/NCAR FNL(1°×1°)再分析资料,对2019年9号台风“利奇马”影响期间2019年8月11日发生的山东特大暴雨过程进行分析。结果表明:1)强降水主要受台风倒槽的影响,台风倒槽在山东中部暴雨区长时间稳定维持,台风东侧的低空东南急流把东海北部的水汽和能量向暴雨区输送,配合200 hPa高空急流的“抽吸作用”,在暴雨区上空辐合抬升,造成具有中尺度特征的暴雨。2)强降水区存在的正涡度区伴随强烈的上升运动、低层辐合、高层辐散的结构和次级环流耦合发展,为此次台风暴雨过程提供了有利的动力条件,而且动力条件的演变在此次台风暴雨过程中的作用比热力条件更重要。3)850 hPa水汽通量辐合中心,以及相匹配的在垂直方向的强上升运动区,对强降水落区和雨强有一定的指示意义。  相似文献   

9.
利用气象资料、灾情资料、浙江宁波地方经济发展数据,采用模糊算法、层次分析法等对台风“利奇马”在宁波地区的影响进行风险和灾情评估,“利奇马”灾害风险评估等级是1级、特重,实际灾损虽是50.19亿元,但灾情等级5级、较轻,实际灾损低于风险评估等级;用逆推算法计算宁波地区“利奇马”台风的气象服务效益达41.76亿元,占台风直接经济损失与气象服务效益之和的45%,服务效益显著。政府及水利部门根据气象预报做出关闸滞洪的决策部署,在保障水库和下游河道堤防安全前提下,为城乡积涝赢得了45小时的排水时间,降低平原河网水位的压力,减轻了内涝灾害;同时充足的水库蓄水,使得后期出现气象干旱时,保障了本地供水安全,气象服务在减少内涝等灾害风险和保障水库蓄水等方面发挥巨大作用。   相似文献   

10.
利用风云四号A星(FY-4A)装载的闪电成像仪探测到的闪电实时定位资料和中央气象台提供的台风定位资料,分析了2019年第9号超强台风“利奇马”的闪电时空演变特征。结果表明:“利奇马”在强台风阶段的日平均闪电密度最大,其次是超强台风阶段。处于增强阶段(△V>0 m·s^-1)时的闪电活动强于减弱阶段(△V<0 m·s^-1),气旋强度稳定时(-5 m·s^-1≤△V<5 m·s^-1),闪电活动最弱。台风成熟以后闪电密度基本呈现出三圈结构。闪电的空间分布具有不对称性,在台风移动方向左侧的闪电数量明显多于右侧。台风外围雨带中的闪电远远多于台风中心发生的闪电,台风中心发生的闪电所占比例不到总数的1%。在台风两次增强阶段均出现闪电的爆发,在台风最强阶段也有较多的闪电发生。在台风最强时期的前半段,眼壁闪电数明显爆发至最大,在台风减弱阶段,眼壁闪电发生很少。  相似文献   

11.
基于地面加密观测、ERA5再分析、ECMWF全球集合预报等多源资料,利用敏感性分析方法、涡度收支诊断方法以及拉格朗日水汽追踪方法,探讨1909号台风“利奇马”造成远距离暴雨的关键动力因子和水汽来源。结果表明,对流层低层短波槽的加深有利于台风远距离降水(Tropical cyclone Remote Precipitation,TRP)区南北两侧的气流共同增强TRP区域内的低层相对涡度,从而增强TRP。尤其相对涡度的散度项是影响TRP增强或减弱的关键作用项。在TRP增强阶段,有利于暴雨增强的正涡度主要由散度项贡献。负的散度项贡献导致相对涡度减小,TRP雨强也随即减弱。在水汽方面,TRP雨强和区域内的水汽含量密切相关。500 hPa上TRP区域内的水汽由局地和台风“利奇马”共同贡献;700 hPa的水汽主要由“利奇马”台风贡献;850 hPa的水汽则由局地和两个台风共同输送,其中台风“罗莎”的贡献更大一些。  相似文献   

12.
本文利用包括海气耦合、气浪耦合及浪流耦合的完全耦合系统,着重研究了2006年“格美”(Kaemi)台风眼墙内的中尺度涡结构。中尺度涡作为影响台风眼墙非对称结构的内部因子,与风垂直切变密切相关,其发展过程受台风下垫面海洋状况的影响。在顺切变右侧,垂直气流逐渐增强,在顺切变左侧达到最大后逐渐减弱。当不考虑海表温度的冷涌反馈作用时,海气间的热通量输送较大,由此引起眼墙内的中尺度对流加强,但集中爆发区仍然位于顺切变方向,不受热通量输送变化的影响。当不考虑海浪对海表粗糙度的影响时,在较小的海表粗糙度条件下,眼墙非对称性减弱,使得中尺度对流涡在切向方向上的分布较为均匀。  相似文献   

13.
Initialization of tropical cyclones has an important role in typhoon numerical prediction. This study applied a typhoon initialization scheme based on the Incremental Analysis Updates (IAU) technique in a rapid refresh system to improve the prediction of Typhoon Lekima (2019). Two numerical sensitivity experiments with or without application of the IAU technique after performing vortex relocation and wind adjustment procedures were conducted for comparison with the control experiment, which did not involve a typhoon initialization scheme. Analysis of the initial fields indicated that the relocation procedure shifted the typhoon circulation to the observed typhoon region, while the wind speeds became closer to the observations following the wind adjustment procedure. Comparison of the results of the sensitivity and control experiments revealed that the vortex relocation and wind adjustment procedures could improve the prediction of typhoon track and intensity in the first 6-h period, and that these improvements were extended throughout the first 12-h period of the prediction by the IAU technique. The new typhoon initialization scheme also improved the simulated typhoon structure in terms of not only the wind speed and warm core prediction but also the organization of the eye of Typhoon Lekima. Diagnosis of the tendencies of variables showed that use of the IAU technique in a typhoon initialization scheme is efficacious in resolving the spurious high-frequency noise problem such that the model is able to reach equilibrium as soon as possible.  相似文献   

14.
郑丽娜  王媛  张子涵 《气象科技》2021,49(3):437-445
利用地面观测资料、雷达资料、FY-2G卫星云图资料及欧洲中心细网格资料,对台风利奇马登陆北上引发山东特大暴雨的成因进行分析。发现:利奇马登陆北上过程中,冷空气先后从台风的西部、西南部与南部侵入至台风中心内部,使其暖心结构逐渐减弱,其变性时段发生在10日20:00至11日08:00。山东的特大暴雨主要出现在台风变性前12h至台风变性后6h。变性之前的暴雨主要是由于台风螺旋云带与高空槽尾部云系相叠加造成的,变性之后的暴雨则是由于冷空气侵入致使台风外围云系演变成强对流复合体造成的。变性之前,对流层内800~500hPa风速小,500~250hPa风速大,气层内有暖平流,整层的上升运动,降水以暖区对流降水为主;变性之后800~500hPa风速大,500~250hPa风速小,500hPa至地面是上升运动,以上为下沉运动,降水以斜压锋区附近的对流降水为主。当500hPa至地面气层内出现冷平流时,湿层变薄,降水趋于减弱。特大暴雨区出现在台风中心西北方向,与850hPa假相当位温锋区与水汽通量散度辐合大值区相吻合。  相似文献   

15.
2018年第14号台风“摩羯”对山东造成了大范围暴雨和大风天气,基于WRF(Weather Research and Forecasting)模式及其Hybrid-3DVAR混合同化预报系统,对Hybrid-3DVAR不同集合协方差比例和不同航空气象数据转发(aircraft meteorological data relay,以下简称AMDAR)资料同化时间窗对台风“摩羯”预报的影响进行了数值研究。结果表明:加大集合协方差比例对台风“摩羯”路径预报有较大影响和改进;当全部取来自集合体的流依赖误差协方差时,预报的台风路径最好,降水预报也最接近实况;AMDAR资料同化对于台风路径和降水预报也有正的改进作用,但加大集合协方差比例到100%时对台风路径预报影响更大;不同资料同化时间窗会影响同化的AMDAR资料数量,从而影响台风降水精细化预报;45 min同化时间窗的要素预报误差最小,对台风造成的强降水精细特征预报最接近实况;不同资料同化时间窗主要影响台风降水预报落区分布,对台风路径预报影响相对较小。  相似文献   

16.
三维变分同化中不同物理量对台风预报的影响   总被引:1,自引:0,他引:1  
采用NMC方法统计了2006年9月的背景误差协方差,利用Bogus资料对台风进行了初始化,并对2006年“桑美”台风进行了同化试验。结果发现,同化不同的Bogus资料,所得到的台风初始场各不相同,对台风预报的影响也各不相同。对海平面气压同化,可以使台风强度明显加强,形成成熟的暖心结构;基于风速同化,对台风强度的改变较弱,对暖心结构的改进不是很明显。在同化海平面气压和风速的基础上,针对相对湿度的同化,在一定程度上可以改善台风强度预报,有利于提高台风路径的预报精度。  相似文献   

17.
岳彩军 《高原气象》2009,28(6):1348-1364
摘要: 基于WRF模式对2005年台风“海棠”登陆降水过程的成功模拟, 本文初步尝试利用修改后的非地转干Q矢量(QN矢量)PG分解, 定量揭示台风结构对台风降水和台风雨强差异形成的影响。结果表明: (1)在台风登陆过程的不同阶段, 对台风降水起主要贡献的台风结构因子是不同的。在台风登陆过程前12 h期间, 对降水贡献最为显著的为QNshdv, 其次是QNalst和QNcrst, 而QNcurv的贡献最小; 在后12 h期间, 对降水贡献最为显著的为QNcrst, 其次是QNcurv, QNshdv的贡献列第三, 而QNalst的贡献最小。(2)各台风结构因子QNalst、 QNcurv、 QNshdv及QNcrst对台风降水发生的贡献都存在明显的时、 空变化。(3)在台风登陆降水过程中, 对每个时刻暴雨雨强形成有贡献的台风结构因子是不同的。相对来讲, QNcurv对暴雨、 大暴雨及特大暴雨之间雨强差异形成的贡献最为显著, QNalst与QNcrst的贡献情况较为接近, 而QNshdv的贡献则相对最小。通过QN矢量PG分解, 可以定量揭示出登陆台风结构对台风降水的影响, 这也是总的QN矢量(即QN矢量)难以揭示的潜在物理机制。  相似文献   

18.
杨春  闵锦忠  刘志权 《大气科学》2017,41(2):372-384
在WRFDA-3DVar(Weather Research and Forecasting model's 3-dimensional variational data assimilation)的框架下,添加了新的探测器AMSR2(Advanced Microwave Scanning Radiometer 2)微波辐射率资料的同化模块,实现了AMSR2辐射率资料在中小尺度同化系统中的有效使用。台风"山神"(Son-Tinh)直接同化AMSR2资料的个例试验结果表明,AMSR2资料可以很好的探测出台风的形态,并且与没有同化该资料的控制试验相比,同化AMSR2辐射率资料可以有效提高模式分析场的质量,进一步提高了台风中心气压,最大风速和台风路径的预报。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号