首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The occurrence of strong ionospheric scintillations with S4≥0.2 was studied using global positioning system (GPS) measurements at Guilin (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of equatorial anomaly in China. The results are presented for data collected from January 2007 to December 2008. The results show that amplitude scintillations occurred only during the first five months of the considered years. Nighttime amplitude scintillations, observed mainly in the south of Guilin, always occurred with phase scintillations, total electron content (TEC) depletions, and Rate Of change of TEC (ROT) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations usually occurred in most of the azimuth directions. GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively.  相似文献   

2.
We present the mean diurnal, seasonal and annual variations in TEC during the lowest solar activity phase from low latitude Indian zone recorded at Udaipur (Geog. Lat. 24.6°N, Geog. Long.73.7°E, Geomag. Lat. 15.6°N) using a GPS receiver. Seasonal variations in daytime TEC show a semiannual periodicity, with a minimum in winter. Results of seasonal variations have been compared with that of the IRI-2007 model. Model calculations reveal significant seasonal as well as longitudinal differences in TEC. Seasonal variations in the nighttime TEC reveal an annual periodicity. Near the crest of the EIA, TEC shows a very good correlation with the solar flux. The results also point to weakening of the anomaly crest as well as its spatial and temporal contraction with declining solar activity.  相似文献   

3.
This paper reports differences in the occurrence statistics of global positioning system (GPS) L-band scintillations at observational sites located in the inner regions of the northern and southern crests of the equatorial ionization anomaly. Ground-based GPS data acquired at the closed magnetically aligned stations of Manaus (3.1°S; 59.9°W; dip lat. 6.2°N) and Cuiabá (15.5°S; 56.1°W; dip. lat. 6.2°S), Brazil, from December 2001 to February 2007 are used in the analysis. The drift dynamics of Fresnel-scale ionospheric irregularities at the southern station of Cuiabá are also investigated. Only geomagnetically quiet days with the sum of daily Kp < 24 were used in the analysis statistics and in the irregularity drift studies. The results reveal a clear dependence of the scintillation occurrence with the solar activity, but there exists an asymmetry in the percentage of scintillation occurrence between the two stations throughout the period analyzed. The nocturnal occurrence of the scintillations over Cuiabá is predominantly larger than over Manaus, but this scenario seems to change with the decline in the solar activity (mainly during local post-midnight hours). A broad minimum and maximum in the scintillation occurrence appears to occur over both the stations, respectively, during the June solstice (winter) and December solstice (summer) months. The dynamics of the Fresnel-scale irregularities, as investigated from the estimations of the mean zonal drift velocities, reveals that the amplitude of the eastward drifts tends to reduce with the decline in the solar activity. The magnitude of the zonal drift velocities during the December solstice months is larger than during the equinoxes, with the differences being more pronounced at solar maximum years. Other relevant aspects of the observations, with complementary data from a low-latitude ionospheric model, are highlighted and discussed.  相似文献   

4.
The effects of geomagnetic storm on GPS ionospheric scintillations are studied here using GPS scintillation data recorded at Sanya (18.3°N, 109.5°E; geomagnetic: 7.6°N, 180.8°E), the southmost station in the Chinese longitude region. GPS scintillation/TEC and DMSP data are utilized to show the development of irregularities during the period year 2005 (solar minimum). Statistical analysis of K planetary index (Kp) and amplitude scintillation index (S4) indicates that most storms of the year did not trigger the scintillation occurrence at Sanya. However, cases of scintillation occurring during moderate and strong storm (Dst<−100) periods show clearly that the development of irregularities producing scintillations can be triggered by geomagnetic storms during the low scintillation occurrence season. The effects (trigger or not trigger/inhibit) depend on the maximum dDst/dt determined local time sector, and can be explained by the response of the equatorial vertical drift velocities to magnetospheric and ionospheric disturbance electric fields. For station Sanya, the maximum dDst/dt determined local time is near the noon (or post-midnight) sector for most storms of the year 2005, which inhibited (or did not trigger) the post-sunset (or post-midnight) scintillation occurrence and then led to the phenomena that the statistical results presented.  相似文献   

5.
This paper presents the results from a study designed to investigate the ability of a newly developed neural network (NN) based model to follow total electron content (TEC) dynamics over the Southern African region. The investigation is carried out by comparing results from the NN model with actual TEC data derived from Global Positioning System (GPS) observations and TEC values predicted by the International Reference Ionosphere (IRI-2007) model during magnetic storm periods over Southern Africa. The magnetic storm conditions chosen for the study presented in this paper occurred during the periods 16–21 April 2002, 1–6 October 2002, and 28 October–01 November 2003. A total of six South African GPS stations were used for the validation of the two models during these periods. A statistical analysis of the comparison between the actual TEC behaviour and that predicted by the two models is shown. In addition, ionosonde measurements from the South African Louisvale (28.5°S, 21.2°E) station, located close to one of the validation GPS stations used, are also considered during the Halloween storm period of 28–31 October 2003. The generalisation of TEC behaviour by the NN model is demonstrated by producing predicted TEC maps during magnetic storm periods over South Africa. Presented results demonstrate the ability of NNs in predicting TEC variability over South Africa during magnetically disturbed conditions, and highlight areas for improvement.  相似文献   

6.
基于陆态网络GPS数据的电离层空间天气监测与研究   总被引:7,自引:2,他引:5       下载免费PDF全文
中国大陆构造环境监测网络(简称陆态网络)是以全球卫星导航定位系统(GNSS)为主,辅以多种空间观测技术,实时动态监测大陆构造环境变化,探求其对资源、环境和灾害的影响的地球科学综合观测网络.基于陆态网络约200个基准站的GPS观测数据,本文探讨了其在电离层空间天气监测与研究方面的应用.包括磁暴期间电离层暴扰动形态,大尺度电离层行进式扰动,太阳耀斑引起的电离层骚扰和低纬电离层不规则体结构等.研究结果表明:陆态网络布局合理,观测数据质量良好,完全可用于中国及周边地区电离层空间天气监测与研究,为进一步开展我国电离层空间天气预警和预报奠定了观测基础.  相似文献   

7.
The present study reports the analysis of GPS TEC prior to 3 earthquakes (M > 6.0). The earthquakes are: (1) Loyalty Island (22°36′S, 170°54′E) on 19 January 2009 (M = 6.6), (2) Samoa Island (15°29′S, 172°5′W) on 30 August 2009 (M = 6.6), and (3) Tohoku (38°19′N, 142°22′E) on 11 March 2011 (M = 9.0). In an effort to search for a precursory signature we analysed the land and ocean parameters prior to the earthquakes, namely SLHF (Land) and SST (Ocean). The GPS TEC data indicate an anomalous behaviour from 1–13 days prior to earthquakes. The main purpose of this study was to explore and demonstrate the possibility of any changes in TEC, SST, and SLHF before, during and after the earthquakes which occurred near or beneath an ocean. This study may lead to better understanding of response of land, ocean, and ionosphere parameters prior to seismic activities.  相似文献   

8.
The variations in the total electron content (TEC), obtained from the data of 11 ground-based GPS stations in the region (5°S–80°N; 110–160°E) in the period August 2–15, 2006, have been analyzed in order to search for possible ionospheric manifestations of the SAOMAI powerful typhoon (August 5–11, 2006) near the south-eastern coast of China. The global TEC maps (GIM) have also been used. In the region of the typhoon action during the magnetic storm of August 7, 2006, an intensification of the TEC variations in the evening local time within the 32–128 min periods range was detected. However, this effect was most probably caused by the dynamics of the irregular structure of the equatorial anomaly and by the disturbed geomagnetic situation (Kp ~ 3–6, Dst varied from ?74 to ?153 nT). The analysis of the diurnal variations in the absolute values of TEC and TEC variations with periods of 2–25 min did not reveal a substantial increase in the intensity and changes in the spectrum of the TEC variations in the period of typhoon action as compared to the adjacent days. Thus, we failed to detect ionospheric disturbances unambiguously related to the SAOMAI typhoon.  相似文献   

9.
The morphology of medium-scale traveling wave packets is for the first time presented based on the total electron content (TEC), measured at the global network of GPS receivers (up to 1500 stations) during the long period (from 1998 to 2007) and at the GPS/GEONET dense Japan network (1220 stations) in 2008—2009. In the time domain, these packets are chains of narrowband TEC variations (trains) with a duration of about 1—2 h, a total duration of up to 6 h, and a variation period of 10—30 min. In the winter Northern Hemisphere, traveling wave packets are observed mostly 3 h after the passage of the morning solar terminator. In the equinox they appear after the passage of the solar terminator without a pronounced delay or advance. In summer traveling wave packets are registered 1.5—2 h before the appearance of the evening solar terminator at the observation point when the solar terminator passes in the magnetically conjugate region. The spatial structure of traveling wave packets is characterized by a high degree of anisotropy and coherence at a distance larger than ten wavelengths (the wavelength is 100—300 km). A high quality of the oscillatory system and synchronization with the appearance of the solar terminator at the observation point and in the magnetically conjugate region indicate that the generation of traveling wave packets by the solar terminator is of the MHD nature. Our results for the first time experimentally confirm the hypothesis that the solar terminator generates ion sound waves, proposed by Huba et al. [2000b].  相似文献   

10.
The monthly median values of the height of peak electron density of the F2-layer (hmF2) derived from ionosonde measurements at three high latitude stations, namely Narssarssuaq (NAR) (61.2 °N, 314.6 °E), Sondrestrom (SON) (67°N, 309.1°E) and College (COL) (69.9°N, 212.2°E) were analyzed and compared with the International Reference Ionosphere (IRI-2001) model, using Comité Consultatif International des Radio communications) (CCIR and Union Radio-Scientifique Internationale (URSI) options. The analysis covers hmF2 values for March Equinox (February, March, April), June Solstice (May, June, July), September Equinox (August, September, October), and December Solstice (November, December, January), during periods of high (2000–2001), medium (2004–2005) and low (2007–2008) solar activity. Generally, the IRI-2001 prediction follow fairly well the diurnal and seasonal variation patterns of the observed values of hmF2 at all the stations. However, IRI-2001 overestimates and underestimates hmF2 at different times of the day for all solar activity periods and in all the seasons considered. The percentage deviation never exceeded 20%, except during DEC SOLS at COL and SON and during MARCH EQUI at SON during low solar activity period. For all solar activity periods considered, both the URSI and CCIR options of the IRI-2001 model give hmF2 values close to the ones measured, but the URSI option performed better than the CCIR option.  相似文献   

11.
GPS data from the International GNSS Service (IGS) network were used to study the development of the severe geomagnetic storm of November 7–12, 2004, in the total electron content (TEC) on a global scale. The TEC maps were produced for analyzing the storm. For producing the maps over European and North American sectors, GPS measurements from more than 100 stations were used. The dense network of GPS stations provided TEC measurements with a high temporal and spatial resolution. To present the temporal and spatial variation of TEC during the storm, differential TEC maps relative to a quiet day (November 6, 2004) were created. The features of geomagnetic storm attributed to the complex development of ionospheric storm depend on latitude, longitude and local time. The positive, as well as negative effects were detected in TEC variations as a consequence of the evolution of the geomagnetic storm. The maximal effect was registered in the subauroral/auroral ionosphere during substorm activity in the evening and night period. The latitudinal profiles obtained from TEC maps for Europe gave rise to the storm-time dynamic of the ionospheric trough, which was detected on November 7 and 9 at latitudes below 50°N. In the report, features of the response of TEC to the storm for European and North American sectors are analyzed.  相似文献   

12.
The variation of plasmaspheric electron content (PEC) is an important parameter for studying the effects of space weather events in the low latitude ionosphere. In the present study, the vertical TEC (VTEC) measurements obtained from co-located dual-frequency Global Positioning System (GPS) and Coherent Radio Beacon Experiment (CRABEX) systems have been used. The daytime PEC variations under different geophysical conditions have been estimated (around the magnetic equator) over the Indian sector, for the first time. The first observations of the nighttime PEC variations over the Indian sector are also estimated from the simultaneous measurements of Faraday rotation, differential Doppler and modulation phase delay made using the CRABEX system on-board the Indian geostationary satellite GSAT2. The study shows that the PEC varies over a range of 10–22% (of the total electron content (TEC)) during daytime of magnetically quiet period. There is an increase in PEC with latitude during magnetically quiet period. During a magnetically disturbed period of 9 November 2004, the PEC increased to ∼30% of the TEC over the magnetic equatorial location of Trivandrum (8.5°N, 76.9°E, dip 0.5°N), while at Bangalore (13°N, 78°E, dip 10°N) it showed a large depletion. The implications of the new observations are discussed.  相似文献   

13.
Results of the studies of ionospheric parameter variations during the intense geomagnetic storm on November 7–11, 2004, in the 20°–80° N, 60°–180° E sector are presented. The data of ionospheric stations and the results of total electron content (TEC) measurements at the network of the GPS ground-based receivers and of the GPS receiver onboard the CHAMP satellite were used. Periods of total absorption and blanketing sporadic E layers were observed at high latitudes, whereas durable negative disturbances typical of geomagnetic storms of high intensity were detected at midlatitudes. In the afternoon hours of local time on November 8, 2004, a large-scale ionospheric disturbance of a frontal type was detected on the basis of foF2 and TEC measurements. The disturbance propagated southwestward at a mean velocity of about 200 m/s. The comparison of the relative amplitude of this large-scale disturbance according to the total electron content (~70%) and foF2 (~80%) measurements made it possible to assume a large vertical scale of the disturbance.  相似文献   

14.
本文利用位于我国中南部电离层闪烁监测台网2012年至2015年的观测数据,比较分析了GPS(Global Positioning System)信号闪烁与周跳的统计特征以及太阳活动和地磁扰动对闪烁与周跳的影响.结果表明,闪烁活动与周跳出现随地方时、月份、太阳活动和地磁扰动变化的统计特征类似,且周跳出现的可能性随S4指数增高显著增大,说明闪烁与周跳存在密切的关联,是引起周跳的一种重要因素.一天之中,闪烁和周跳主要出现在日落后至黎明前,午夜前出现最频繁,白天仅偶尔出现.在赤道异常峰及其邻近区域,一年之中,闪烁和周跳主要出现在春秋季,春季闪烁活动和周跳出现明显比秋季频繁,呈现春秋不对称性,冬夏季节闪烁和周跳都很少出现.闪烁活动与周跳出现的逐年变化显著依赖太阳活动水平,随太阳活动水平升高而增强,而地磁扰动与闪烁活动与周跳出现呈负相关,地磁扰动对闪烁活动与周跳出现整体上起抑制作用.平均而言,越靠近磁赤道的台站闪烁活动越频繁,随纬度升高,闪烁活动频次逐渐降低,且闪烁活动的开始时间随纬度升高而滞后,暗示引起GPS信号闪烁的电离层不规则结构主要起源于磁赤道区.此外,分析还发现,闪烁活动与周跳出现的空域有相当好的一致性,主要分布在观测点上空仰角55°以下、方位角150°~240°的空域内.  相似文献   

15.
A comparison of the diurnal and seasonal variations in the ionospheric equivalent slab thickness (τ) and bottomside slab thickness (B0) is presented based on the observation during high solar activities at a mid-latitude station—Wuhan (114.4°E, 30.6°N). The investigated data include foF2, hmF2, B0, B1, and TEC, and are derived from the measured ionogram and GPS receiver over Wuhan from April 1999 to March 2000. The results show that τ and B0 are highly/weakly correlated during the day/night, respectively. Furthermore, a comprehensive discussion of the relation between τ, B0, and hmF2 for geomagnetic storm events is provided in this paper.  相似文献   

16.
利用2004年11月6~10日磁暴发生期间南极区域内的中国中山站GPS常年跟踪站(ZHON)和国际GPS服务站(CAS1, MCM4, SYOG, MAW1)的GPS观测数据,计算了可观测卫星传播路径上的TEC和ROT值,进而依据TEC的波动频率和幅度推估出极区碎片的个数,分析了极区磁暴期间电离层响应及其极区碎片特性. 最终所得TEC和ROT结果与极区地磁场Dst和Kp指数信息相吻合,如实地反映了磁暴事件和极区碎片的出现. 本文所做工作在国内尚未开展,因此所用方法和结论为将来这一方向的研究提供了一定的参考.  相似文献   

17.
The characteristics of the cold point tropopause (CPT), convective tropopause (COT) and tropical tropopause layer (TTL) in the tropical region at different longitudes are studied using radiosonde data at 5 stations in the tropical belt (±15°) and high resolution GPS radiosonde data from April 2006 to December 2008 at Gadanki (13.5°N, 79.2°E) also a tropical station. The CPT over Gadanki is found to be higher than over the rest of the stations. This aspect is further confirmed using COSMIC GPS RO observations. In the Northern Hemisphere (NH) winter, the CPT is coldest over stations in the Pacific region compared to the other stations while in the NH summer, it is coldest at Gadanki, a station in the Indian monsoon region. The range of seasonal variation of the CPT temperature is found to be quite small over Gadanki compared to the other stations whereas that of the CPT altitude is nearly the same.  相似文献   

18.
A statistical analysis of observations of large-scale undulations during the 23rd cycle of solar activity was performed using optical data from two stations: Tixie (71.6°N, 128.9°E) and Zhigansk (66.8°N, 123.4°E). The total number of events recorded was 54 (43 events at Tixie and 11 at Zhigansk). The complete list of observed events is presented. The occurrence frequency of eveningside (17–23 LT) undulations during the solar activity growth (1999) and decline (2003–2005) phases tends to increase. Large-scale undulations were shown to be generated both on the equatorward boundary of the diffuse auroral zone and inside the diffuse zone, which does not necessarily occur during magnetic storms.  相似文献   

19.
In this paper, we analyze the TEC data for April 2013 observed at Agra station, India (geogr. lat. 27.2° N, long. 78° E) to examine the effect of earthquake of magnitude M = 7.8 which occurred on 16 April 2013 at Pakistan–Iran border region. We process the TEC data using the s statistical criterion to find out anomalous variation in TEC data. We also study the VLF propagation signal from NPM, Hawaii (21.42° N, 158° W), which is monitored at the same station (Agra station) in the light of this earthquake as well as solar flares. The nighttime fluctuation method is used to analyze the VLF data for the period of ±5 days from the day of earthquake (11–21 April 2013). The anomalous enhancements and depletions are found in TEC data on 1–9 days before the occurrence of event.  相似文献   

20.
This study analyzes the TEC data during 1998–2007, observed by the AREQ (16.5°S, 71.5°W) GPS station to investigate the equatorial ionospheric variations under geomagnetic quiet-conditions. The diurnal TEC values generally have a maximum value between 1330 and 1500 LT and a minimum around 0500 LT. For the seasonal variation, the semi-annual variation apparently exists in the daytime TEC with two peaks in equinoctial months. In contrast, this semi-annual variation is not found in the nighttime. Furthermore, the results of the annual variation show that the correlation between the daytime TEC value and the solar activity factor is highly positive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号