共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
利用2000-2006年长江下游沿江8个风速、风向观测点与邻近气象站同步对比观测资料和1971—2006年长江下游40个气象站风资料, 依据具99%置信水平的数理重构方案和极值Ⅰ型计算方法, 详细给出长江下游百年一遇风速分布状况。结果表明:长江下游沿江地区百年一遇极值风速为25~38 m/s, 较一般方法上限高3 m/s, 下限低2 m/s; 长江南京—镇江段和南通—崇明段, 是长江下游沿江地区的两个大风区, 百年一遇极值风速不低于29 m/s, 其在入海口附近可达34 m/s以上; 在长江常州—江阴段, 江南、江北对称分布两个风速相对低值区, 百年一遇极值风速为23~24 m/s。该结果充分考虑气象站风速资料和局地风速状况, 是沿江相关工程气象应用的重要补充。 相似文献
3.
利用内蒙古东部48个气象站有自记式风速仪记录以来的逐年10 min最大风速资料,采用极值Ⅰ型计算方法,给出了该地区重现期30年、50年和100年的极值风速分布图,并分析了近30年最大风速和极值风速的分布特征。结果表明:近42年来内蒙古东部年最大风速具有明显的阶段性下降趋势, 减小速率约为每10年14 m/s;最大风速的年内变化为双峰型,年最大风速主要出现在春季;偏西风的最大风速较大,出现年最大风速的频率高达70%;年最大风速值和极值风速的分布总体呈自西向东减小趋势,但也存在明显的区域性分布特征。该结果将为内蒙古东部电网的设计、运行和维护提供重要的参考依据。 相似文献
4.
分析了乌鲁木齐、达坂城、红雁池气象哨三站的大风资料知:红雁池与乌鲁木齐风速之间的线性关系较好,因此用乌鲁木齐气象站大风资料,订正红雁池气象哨大风序列。又根据风随高度变化的规律及极值I型分布函数,计算出红雁池气象哨10m、15m高度处不同重现期10min平均最大风速和瞬间极大风速,从而进一步推出工程区构筑物所能承受的设计风速。 相似文献
5.
Weibull分布参数估计方法及其应用 总被引:12,自引:1,他引:12
Weibull分布对于年最大风速、波高、降水量等气候极值具有很高的拟合精度和很强的适应性。本文给出四种Weibull分布参数估计方法:概率权重矩法(PWM)、最小二乘法(LSM)、最大似然法(M-L)和适线法(FIT),并通过统计检验进行拟会精度比较。结果表明:PWM、LSM和M-L法对样本的拟合精度都比较高,其中PWM法计算最为简便,LSM和M-L法采取a0的试设法,大大简化了计算过程;经验累积频率公式Pi=i-0.35/n(i=1,2,…,n)更适合于Weibull分布;三参数计算精度较二参数高得多。 相似文献
6.
为了进一步提高WRF模式对风速预报的准确性,以我国某风电场01#测风塔2007年5月和11月的数据为例,通过线性回归方法并结合滚动和极值处理技术,对WRF模式模拟风速进行了订正。结果表明,直接使用线性回归方法对于模拟风速的订正无明显效果;采用滚动技术的线性回归订正效果与步长有关,与线性回归订正相比总体上有较大改进,其中3 h步长改进更明显;相同步长,线性滚动极值处理订正较线性滚动订正相比有进一步改进,其中1 h步长线性滚动极值处理效果最优,如5月和11月订正前模拟风速的相对均方根误差(rRMSE)分别为29.274%、33.583%,订正后下降为14.714%、14.493%。订正后精度明显提高,更接近实况风速,线性滚动极值处理订正方法能够较好订正模式模拟风速,有效提高风速预报准确率。 相似文献
7.
成都地面气温与风速年极大值的渐近分布及参数估计 总被引:5,自引:0,他引:5
孟庆珍 《成都气象学院学报》1997,12(4):284-291
利用1933-1992年期间成都地面最高气温和地面最大风速年极值的记录,通过统计推断,找出了成都地面最高气温年极值和地面最大风速年极值遵循的渐近分布-Weibull分布和Gumbel分布,并讨论了它们的参数估计方法。 相似文献
8.
9.
采用Poisson-Weibull复合极值分布方法对湛江近海36年的风暴过程资料进行统计分析。推算出湛江近海的多年一遇设计风速,并单一因素设计方法进行比较。计算结果表明,复合极值统计模式计算结果较稳定。 相似文献
10.
鄂东长江公路大桥设计风速推算研究 总被引:3,自引:0,他引:3
利用黄石气象站年最大风速资料,在均一性检验基础上,利用极值Ⅰ型分布曲线,推算出气象站处基本风速,结合桥位处一年完整的对比观测,通过比值法把基本风速推算到设计风速。结果表明:(1)黄石气象站年最大风速在1990年前后突然减小,可能与周边建筑物增加以及全球气候变暖共同作用有关;(2)黄石气象站不同重现期(100、50、30、10 a)10 m高处10 m in平均年最大风速(基本风速)分别为25.1、23.3、22.0、19.1m/s;(3)确认气象站到桥位的风速放大系数为1.2;(4)桥位区不同重现期(100、50、30、10 a)10m高处10 m in平均年最大风速(设计风速)分别为30.1、28.0、26.4、22.9 m/s。 相似文献
11.
利用广东省86个国家气象观测站建站以来近70a的逐月最大风速序列和近20a(1999—2018年)的逐月最大风速序列,基于POT抽样法,分别采用三参数广义帕累托分布函数对各站的重现期风速进行了概率计算,计算过程中三参数广义帕累托分布函数分别采用矩估计(MOM)、极大似然估计(MLE)、似然矩估计(LM)和概率权矩估计(PWM)等4种参数估计方法,结合表征参数估计优良性的指标:均方根误差RMSE、拟合相对偏差和显著性水平为0.05的科莫戈洛夫检验拟合适度指标K_f对拟合效果进行检验,结果表明:基于POT抽样的概率权矩估计(PWM)拟合效果最好。 相似文献
12.
台风影响上海时风速风向分布特征 总被引:3,自引:0,他引:3
用1971-2002年的气象资料,分析了不同路径台风影响上海时风速风向的分布特征。登陆台风影响时,上海南部地区风速最大,主导风向是偏东风;近海北上台风影响时,上海东部的风速最大,风向以东北偏北为主。城市的发展使台风影响上海时的风速明显减小。 相似文献
13.
14.
15.
为了提高风电场风速预报和功率预测的精度和准确率,并考虑风机测风数据的不稳定因素,以多年服务的内蒙古中部某风力发电场A为研究区,在勘察风电场地形及风机布局后,按照季节、风向进行风机间风速时空相关性分析,划分出风机轮毂高度风速高相关为典型特征的风机网格分类片区,采用卡尔曼滤波方法,通过直接和间接两种订正方案,分别进行风机片区风速订正。结果表明:风速高相关风机片区的划分,对于提高风电场风速预报及功率预测精度和准确率具有一定作用,利用风电场区测风塔梯度观测风速,对风机片区进行间接订正,可有效改善数值模式预报风速,15个片区类型下相关系数由0.18~0.72提高至0.67~0.91,误差绝对值由1.6~2.9 m·s-1降低至1.0~1.5 m·s-1。 相似文献
16.
河北地区边界层内不同高度风速变化特征 总被引:11,自引:4,他引:11
为了研究城市化进程对风速变化的影响,利用1971-2006年河北省境内邢台、张家口和乐亭3个探空站高空风观测资料和对应地面站风观测资料,统计分析了边界层内距地面10m、300m、600m、900m 4个高度的长期风速变化特征,比较了不同高度风速变化趋势的异同.分析结果表明:3站年和季节平均风速随着距地面高度的增加而变大,但最大的风速垂直递增率出现在从10m到300m之间;各站各高度层月平均风速具有明显的季节变化特征,春季风速最大,夏季较小;在近36年里,3站平均的地面(10m高)年和季节平均风速变化存在显著的减少趋势,300m以上各高度层平均风速一般也降低,但远没有地面明显;不同高度平均风速变化趋势的差异可能主要是由城市化以及台站附近观测环境的改变引起的,这使得地面风速明显减弱;但地面以上各层平均风速同样存在一定减弱现象,说明背景大气环流的变化也是地面风速下降的原因之一. 相似文献
17.
利用气象站、探空及NASA再分析资料,对江西省4县山地风场的12座测风塔风速进行订正研究。研究结果表明:测风塔与气象站风速数据相关性较低,相关系数一般远小于0.45;测风塔与探空资料的风速相关系数可达到0.6以上,最高可达到0.8;NASA再分析资料可以作为江西山地风场风速订正参证数据,其与测风塔风速数据相关性较高,相关系数可达到0.54~0.77,大多数测风塔相关系数可达0.7左右。海拔高度小于1000 m的测风塔与NASA 50 m风速的相关系数明显高于其与NASA 850 hPa风速的相关系数,高度为1000—1200 m的测风塔与NASA 50 m风速和与NASA 850 hPa风速的相关系数相差不明显,高度大于1200 m的测风塔与NASA 850 hPa风速的相关系数明显大于其与NASA 50 m风速的相关系数。比值法订正效果略好于线性回归法的,订正后的风功率密度总体偏大。 相似文献
18.
极端风速分布模式在我国各气候区域的适用性 总被引:6,自引:0,他引:6
选用我国各气候区11个较长资料年代的台站,分析韦伯尔分布,皮尔逊Ⅲ型分布和极值Ⅰ型分布对最大风速和极大风速的适用笥,揭示出极值Ⅰ型是最佳模式,韦伯尔分布最差。而且这个结论几乎适合于全国。 相似文献
19.
基于安徽省1981~2012年近32 a风速、风向资料,利用常规气象统计方法,分析了安徽省平均风速、最大风速以及极大风速的空间分布特征,重点分析了最大风速易出现的方位、季节以及各重现期下的风速分布。结果表明:平均风速与最大风速的空间分布相似,大别山区和皖南山区低海拔地区为风速低值区,黄山以及大别山区以北和以东的平原和丘陵地区为风速大值区。除大别山区北部和皖南山区南部的部分地区外,近32 a全省大部风速普遍呈现显著减少趋势。长江以北地区的最大风速出现偏西风的频率最高,大别山区和皖南山区最大风速出现频率最高的方位空间差异明显。此外,最大风速出现在春季的频率最高。 相似文献