首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Wave breaking on turbulent energy budget in the ocean surface mixed layer   总被引:2,自引:0,他引:2  
As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).  相似文献   

2.
Upper-ocean turbulent mixing plays a vital role in mediating air-sea fluxes and determining mixed-layer properties, but its energy source, especially that near the base of the mixed layer, remains unclear. Here we report a potentially significant yet rarely discussed pathway to turbulent mixing in the convective mixed layer. During convection, as surface fluid drops rapidly in the form of convective plumes, intense turbulence kinetic energy(TKE) generated via surface processes such as wave breaking is advected downward, enhancing TKE and mixing through the layer. The related power, when integrated over the global ocean except near the surface where the direct effect of breaking waves dominates, is estimated at O(1)TW, comparable to that required by maintaining the Meridional Overturning Circulation(MOC). The mechanism in question therefore deserves greater research attention, especially in view of the potential significance of its proper representation in climate models.  相似文献   

3.
Effect of wave-induced Stokes drift on the dynamics of ocean mixed layer   总被引:1,自引:0,他引:1  
The wave-forcing ’Coriolis-Stokes forcing’ and ’Stokes-vortex force’ induced by Stokes drift affect the upper ocean jointly.To study the effect of the wave-induced Stokes drift on the dynamics of the ocean mixed layer,a new three-dimensional(3D) numerical model is derived using the primitive basic equations and Eulerian wave averaging.The Princeton Ocean Model(POM),a 3D primitive equation ocean model is used with the upper wave-averaged basic equations.The global ocean circulation is simulated using the POM model,and the Stokes drift is evaluated based on the wave data generated by WAVEWATCH III.We compared simulations with and without the Stokes drift.The results show that the magnitude of the Stokes drift is comparable with the Eulerian mean current.Including the Stokes drift in the ocean model affects both the Eulerian current and the Lagranian drift and causes the vertical mixing coefficients to increase.  相似文献   

4.
The upper mixed layer (UML) depth obtained from temperature is very close to that from density:the maximum is about 15m. This indicates that temperature is a good indicator of mixed layer during measurements. When the surface heat flux is balanced by a cross-shore heat flux, the surface mixed layer depth obtained from the WM model (Weatherly and Martin, 1978),hPRT, is roughly the same as observed. The mixed layer depth calculated from the PWP model (Price, Weller and Pinkel, 1986) is close to the depth obtained from thermistor chain temperature data. The results show that both the WM model and PWP model can provide a good estimate of stratification in the study area during the cruise. The value of log( h/u3) is about 9.5 in the study area, which shows that the study area is strongly stratified in summer. Observations on the northern Portugal shelf reveal high variability in stability, giving rise to semi-diurnal, semi-monthly and diurnal oscillations, and long term variations. The fortnightly oscillatio  相似文献   

5.
The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.  相似文献   

6.
Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using parameterization schemes that distribute brine rejection directly in the upper ocean mixed layer.In this study,idealized ocean model experiments were conducted to examine modeled ocean mixing errors as a function of the lead fraction in a climate model grid.When the lead is resolved by the grid,the added salt at the sea surface will sink to the base of the mixed layer and then spread horizontally.When averaged at a climate-model grid size,this vertical distribution of added salt is lead-fraction dependent.When the lead is unresolved,the model errors were systematic leading to greater surface salinity and deeper mixed-layer depth(MLD).An empirical function was developed to revise the added-salt-related parameter n from being fixed to lead-fraction dependent.Application of this new scheme in a climate model showed significant improvement in modeled wintertime salinity and MLD as compared to series of CTD data sets in 1997/1998 and 2006/2007.The results showed the most evident improvement in modeled MLD in the Arctic Basin,similar to that using a fixed n=5,as recommended by the previous Arctic regional model study,in which the parameter n obtained is close to 5 due to the small lead fraction in the Arctic Basin in winter.  相似文献   

7.
The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role of Bvl is revealed by comparing the ocean temperature,statistical analysis of errors and evaluating the mixed layer depth.It is shown that the overestimated SST is improved effectively when the wave-induced mixing is incorporated to the vertical mixing scheme.As can be seen from the vertical structure of temperature 28℃ isotherm changes from 20 min CR to 35 m in SR3,which is more close to the observation.Statistic analysis shows that the root-mean-square errors of the temperature in 10 m are reduced and the correlation between model results and observation data are increased after considering the effect of Bvl.The numerical results of the ocean temperature show improvement in summer and in tropical zones in winter,especially in the strong current regions in summer.In August the mixed layer depth(MLD) which is defined as the depth that the temperature has changed 0.5℃ from the reference depth of 10 m is further analyzed.The simulation results have a close relationship with undetermined coefficient of Bvl,sensitivity studies show that a coefficient about 0.1 is reasonable value in the model.  相似文献   

8.
Insufficient vertical mixing in the upper ocean during summer is a common problem of oceanic circulation and climate models. The turbulence associated with non-breaking waves is widely believed to effectively solve this problem. In many studies, non-breaking surface wave processes are attributed to the effects of Langmuir circulations(LCs). In the present work, the influences of LCs on the upper-ocean thermal structure are examined by using one-and three-dimensional ocean circulation, as well as climate, models. The results indicated that the effect of vertical mixing enhanced by LCs is limited to the upper ocean. The models evaluated, including those considering LC effects alone and the combined effects of LCs and wave breaking, failed to produce a reasonable summertime thermocline, resulting in a large cold bias in the subsurface layer. Therefore, while they can slightly reduce the biases of mixed layer depths and sea surface temperatures in models, LCs are insufficient to solve the problem of insufficient vertical mixing. Moreover, restriction of non-breaking surface wave-induced processes in LCs may be questionable.  相似文献   

9.
We deployed two ADCP mooring systems west of the Luzon Strait in August 2008, and measured the upper ocean currents at high frequency. Two typhoons passed over the moorings during approximately one-month observation period. Using ADCP observations, satellite wind and heat flux measurements, and high-resolution model assimilation products, we studied the response of the upper ocean to typhoons. The first typhoon, Nuri, passed over one of the moorings, resulting in strong Ekman divergence and significant surface cooling. The cooling of surface water lagged the typhoon wind forcing about one day and lasted about five days. The second typhoon, Sinlaku, moved northward east of the Luzon Strait, and did not directly impact currents near the observation regions. Sinlaku increased anomalous surface water transport exchange across the Luzon Strait, which modulated the surface layer current of the Kuroshio.  相似文献   

10.
Six coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed for examining the full evolution of the North Pacific mode water and Subtropical Countercurrent (STCC) under global warming over 400 years following the Representative Concentration Pathways (RCP) 4.5. The mode water and STCC first show a sharp weakening trend when the radiative forcing increases, but then reverse to a slow strengthening trend of smaller magnitude after the radiative forcing is stablized. As the radiative forcing increases during the 21st century, the ocean warming is surface-intensified and decreases with depth, strengthening the upper ocean’s stratification and becoming unfavorable for the mode water formation. Moving southward in the subtropical gyre, the shrinking mode water decelerates the STCC to the south. After the radiative forcing is stabilized in the 2070s, the subsequent warming is greater at the subsurface than at the sea surface, destabilizing the upper ocean and becoming favorable for the mode water formation. As a result, the mode water and STCC recover gradually after the radiative forcing is stabilized.  相似文献   

11.
Journal of Oceanology and Limnology - The upper mixed layer depth (h) has a significant seasonal variation in the real ocean and the low-order statistics of Langmuir turbulence are dramatically...  相似文献   

12.
A large number of autonomous profiling floats deployed in global oceans have provided abundant temperature and salinity profiles of the upper ocean. Many floats occasionally profile observations during the passage of tropical cyclones. These in-situ observations are valuable and useful in studying the ocean’s response to tropical cyclones, which are rarely observed due to harsh weather conditions. In this paper, the upper ocean response to the tropical cyclones in the northwestern Pacific during 2000–2005 is analyzed and discussed based on the data from Argo profiling floats. Results suggest that the passage of tropical cyclones caused the deepening of mixed layer depth (MLD), cooling of mixed layer temperature (MLT), and freshening of mixed layer salinity (MLS). The change in MLT is negatively correlated to wind speed. The cooling of the MLT extended for 50–150 km on the right side of the cyclone track. The change of MLS is almost symmetrical in distribution on both sides of the track, and the change of MLD is negatively correlated to pre-cyclone initial MLD.  相似文献   

13.
The mixed layer depth (MLD) in the upper ocean is an important physical parameter for describing the upper ocean mixed layer. We analyzed several major factors influencing the climatological mixed layer depth (CMLD), and established a numerical simulation in the South China Sea (SCS) using the Regional Ocean Model System (ROMS) with a high-resolution (1/12°×1/12°) grid nesting method and 50 vertical layers. Several ideal numerical experiments were tested by modifying the existing sea surface boundary conditions. Especially, we analyzed the sensitivity of the results simulated for the CMLD with factors of sea surface wind stress (SSWS), sea surface net heat flux (SSNHF), and the difference between evaporation and precipitation (DEP). The result shows that of the three factors that change the depth of the CMLD, SSWS is in the first place, when ignoring the impact of SSWS, CMLD will change by 26% on average, and its effect is always to deepen the CMLD; the next comes SSNHF (13%) for deepening the CMLD in October to January and shallowing the CMLD in February to September; and the DEP comes in the third (only 2%). Moreover, we analyzed the temporal and spatial characteristics of CMLD and compared the simulation result with the ARGO observational data. The results indicate that ROMS is applicable for studying CMLD in the SCS area.  相似文献   

14.
The formulation and justification of a three-layer baroclinic ocean model developed to simulate thegeneral circulation of the ocean are described in this paper.Test of the model in simulating the annualmean circulation patterns in the North Pacific under the prescribed atmospheric forcing,which consists ofthe climatological surface wind stress and sea surface heat flux,and comparison of the results withobservations showed that the model basically simulated the large scale features of the annual meancirculation patterns in the North Pacific Ocean such as those of the intensified western boundary currentsand the North Equatorial Currents and Undercurrents.But due to the coarse resolution of the model,some details of these currents were poorly reproduced.The seasonal variations of the North Pacific Oceancirculation driven by the seasonal mean sea surface wind stress was calculated,the different aspects of theseresults were analyzed and the main current(the intensified western boundary currents)transports we  相似文献   

15.
A regional sea ice-ocean coupled model for the Arctic Ocean was developed, based on the MITgcm ocean circulation model and classical Hibler79 type two categorythermodynamics-dynamics sea ice model. The sea ice dynamics and thermodynamicswere considered based on Viscous-Plastic (VP) and Winton three-layer models, respectively. A detailed configuration of coupled model has been introduced. Special attention has been paid to the model grid setup, subgrid paramerization, ice-ocean coupling and open boundary treatment. The coupled model was then applied and two test run examples were presented. The first model run was a climatology simulation with 10 years (1992?002) averaged NCAR/NCEP reanalysis data as atmospheric forcing. The second model run was a seasonal simulation for the period of 1992?007. The atmospheric forcing was daily NCAR/NCEP reanalysis. The climatology simulation captured the general pattern of the sea ice thickness distribution of the Arctic, i.e., the thickest sea ice is situated around the CanadaArchipelago and the north coast of the Greenland. For the second model run, themodeled September Sea ice extent anomaly from 1992?007 was highly correlated with the observations, with a linear correlation coefficient of 0.88. Theminimum of the Arctic sea ice area in the September of 2007 was unprecedented. The modeled sea ice area and extent for this minimum was overestimated relative to the observations. However, it captured the general pattern of the sea ice retreat.  相似文献   

16.
In this paper, a heavy sea fog event occurring over the Yellow Sea on 11 April 2004 was investigated based upon observational and modeling analyses. From the observational analyses, this sea fog event is a typical advection cooling case. Sea surface temperature(SST) and specific humidity(SH) show strong gradients from south to north, in which warm water is located in the south and consequently, moisture is larger in the south than in the north due to evaporation processes. After fog formation, evaporation process provides more moisture into the air and further contributes to fog evolution. The sea fog event was reproduced by the Regional Atmospheric Modeling System(RAMS) reasonably. The roles of important physical processes such as radiation, turbulence as well as atmospheric stratification in sea fog’s structure and its formation mechanisms were analyzed using the model results. The roles of long wave radiation cooling, turbulence as well as atmospheric stratification were analyzed based on the modeling results. It is found that the long wave radiative cooling at the fog top plays an important role in cooling down the fog layer through turbulence mixing. The fog top cooling can overpower warming from the surface. Sea fog develops upward with the aid of turbulence. The buoyancy term, i.e., the unstable layer, contributes to the generation of TKE in the fog region. However, the temperature inversion layer prevents fog from growing upward.  相似文献   

17.
We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs), Simulating WAves Nearshore (SWAN) wave model, and the Model Coupling Toolkit (MCT). The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process. Experimental results in an idealized setting show that under the steady state, the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 m/s. The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW, taking 14% of the direct wind energy rate input. Considering the Stokes drift effects, the total mechanical energy rate input was increased by approximately 14%, which highlights the importance of CSF in modulating the upper ocean circulation. The actual run conducted in Taiwan Adjacent Sea (TAS) shows that: 1) CSF-based wave-current coupling has an impact on ocean surface currents, which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy’s vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree, 3.75% on average.  相似文献   

18.
The response of the North Pacific Subtropical Mode Water and Subtropical Countercurrent (STCC) to changes in greenhouse gas (GHG) and aerosol is investigated based on the 20th-century historical and single-forcing simulations with the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). The aerosol effect causes sea surface temperature (SST) to decrease in the mid-latitude North Pacific, especially in the Kuroshio Extension region, during the past five decades (1950–2005), and this cooling effect exceeds the warming effect by the GHG increase. The STCC response to the GHG and aerosol forcing are opposite. In the GHG (aerosol) forcing run, the STCC decelerates (accelerates) due to the decreased (increased) mode waters in the North Pacific, resulting from a weaker (stronger) front in the mixed layer depth and decreased (increased) subduction in the mode water formation region. The aerosol effect on the SST, mode waters and STCC more than offsets the GHG effect. The response of SST in a zonal band around 40°N and the STCC to the combined forcing in the historical simulation is similar to the response to the aerosol forcing.  相似文献   

19.
Based on 48-year (1958-2006) ocean reanalysis data of Simple Ocean Data Assimilation and 23-year (1984-2006) global ocean-surface heat flux products developed by the Objectively Analyzed Air-Sea Heat Flux Project, meridional variation of the western Pacific Warm Pool (WPWP) is addressed. The results show that there is a significant expansion of the northern edge of the WPWP in the late 1990s and early 2000s. This variation is mainly within 120°E-160°E by 8°N-20°N, we define this region (120°E-160°E by 8°N-20°N) as the core region. Furthermore, analyses on upper ocean heat budget show that the short wave radiation plays a key role in the northward expansion of the northern edge of the WPWP in the core region. It is proved that the northward expansion may be caused by the change of the mixed layer which became shallower in 1994-2006 compared with 1984-1993 in the study region. The short wave radiation flux distribution within the shallower mixed layer leads to a positive anomaly in seawater temperature, promoting the northward expansion of the WPWP.  相似文献   

20.
A two and a half layer oceanic model of wind-driven, thermodynamical general circulation is appliedto study the interannual oscillation of sea surface temperature (SST) in the South China Sea (SCS). Themodel consists of two active layers: the upper mixed layer (UML) and the seasonal thermocline, with themotionless abyss beneath them. The governing equations which include momentum, continuity and sea.temperature for each active layer, can describe the physics of Boussinseq approximation, reduced gravityand equatorial β-plane. The formulas for the heat flux at the surface and at the interface between twoactive layers are designed on the Haney scheme. The entrainment and detrainment at the bottom of theUML induces vertical transport of mass,momentum and heat, and couples of dynamic andthermodynamic effect.Using leap-frog integrating scheme and the Arakawa-C grid the model is forced bya time-dependent wind anomaly stress pattern obtained from category analysis of COADS. The numerical results indicate that t  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号