首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soviet geologists consider the Precambrian to be divided into two groups — Archaean and Proterozoic; but such a division is unsatisfactory. A major unconformity separates Proterozoic volcanic and sedimentary formations from an underlying sequence that contains two supergroups of supercrustal formations. The oldest of these is unanimously considered to be Archaean. Rocks of that supergroup play an essential part in the composition of the Baltic, Ukrainian, Aldan and Anabar Shields and of the ancient fold belts of the East-European and Siberian platforms.Distinctive features in the composition, tectonic structure, metamorphism and metallogeny of Archaean complexes lead to the conclusion that they were formed in specifically mobile areas, different from geosynclinal areas.The other supergroup of high-grade metamorphic rocks has no clear place in the accepted two-fold stratigraphic scheme of the Precambrian, and it is considered sometimes to be Archaean and sometimes to be Early Proterozoic. We propose restoring the forgotten name “Eozoic” for that supergroup. Eozoic complexes are characterized by peculiarities of composition and inner structure, which signify changes in the tectonic regime of the earth at the lower and upper boundaries of the Eozoic Supergroup. These peculiarities give grounds for distinguishing the Eozoic Supergroup as an independent stratigraphic division.The Stanovoy Complex of the southern part of the Aldan Shield is a stratotype for the Eozoic Supergroup. Many well-known stratigraphic subdivisions of the Siberian Platform (e.g., the Eniseiskaya, the Birusinskaya series and others), the Taratash Complex of the Urals, the Goranskaya and Shahdarinskaya series of the South-West Pamir, the Tikitch complex and Aulskaya series of the Ukrainian Shield, and in part the Belomorsky Complex of the Baltic Shield, as well as some others, are also Eozoic.The Eozoic complexes are characterized by the following specific features: only some supercrustal formations are typical for them; the small number of rock types which have a total thickness about 5–6 km; relatively monotonous mineral composition of the rocks; variable quantitative ratios of rocks; absence of contrasting marker beds; regional metamorphism and ultrametamorphism in the amphibolite facies; wide development of ultrametamorphic granitoids and migmatites; distinct tectonic differentiations of the basin of sedimentation.Dates determined by isotopic analyses, which mostly reflect the metamorphism of the deposits, fall predominantly in the range 2600–3100 Ma.  相似文献   

2.
The data on typomorphism of placer gold and its localization in the eastern Siberian Platform have been integrated for the first time. The alluvial, pseudolode, and eolian morphology of gold determines the origin of placers, which is explained not only by hydrodynamic but also by eolian processes. The recent and older alluvial (Au-bearing reservoir rocks in the second case), as well as eolian (unconventional type), genetic types of placers are recognized in the given territory. Precambrian and Mesozoic stages of ore formation are distinguished by the set of typomorphic attributes of placer gold (chemical composition, microinclusions, internal structure, etc.). On the basis of distinguishing features of placer gold, Precambrian lode deposits of great depth spatially related to outcrops of the basement have been forecasted for the first time and classified into low-sulfide gold-quartz, Au-bearing banded iron formation, Au-Cu porphyry, and Au-PGE types. The inferred shallow-seated gold-silver and gold-sulfide-quartz disseminated deposits occur locally and are related to the Mesozoic tectonomagmatic reactivation. The elaborated methods and approaches to the study of placer gold typomorphism in the eastern Siberian Platform also could be helpful in providing insights into placer origin, and forecasting and prospecting gold deposits on the East European Platform, which is close to the Siberian Platform in geological evolution.  相似文献   

3.
Based on Pb-Pb isochron data of more than 40 Precambrian polymetallic deposits, the authors consider that there are four mineralization periods for the Precambrian copper deposits in China, and the major copper deposits were formed at about 1800 Ma; there are three mineralization periods for gold deposits formed from Archaean to Proterozoic. By studying hundreds of lead isotope data from some Mesozoic continental subvolcanic Cu and Ag polymetallic deposits and fine-disseminated gold deposits, the authors found that the calculation based on the lead single-stage evolution model or two-stage evolution model cannot give the true ore-forming ages but can provide more information about mineralization and material sources of the deposits.  相似文献   

4.
Based on published data and original investigations, it has been shown that the combination of widely known Ag, Fe, and Fe-Mn ore deposits, as well as boron and Pb-Zn world-class deposits, is typical for metallogenic zones in the north and northeast of the Sino-Korean Craton. The ore genesis was spatially inherited and lasted from the Archean to Mesozoic. The Archean metallogenic zones are related to the protocontinental margin terranes of the craton basement and they comprise banded iron ore and Cu-Zn sulfide deposits. The proterozoic-Early Paleozoic metallogenic zones are related to rift basins, where the ore-bearing Archean folded basement is overlain by volcanic and sedimentary complexes. The Proterozoic metallogenic zones host quartz veins and schistosity zone-related Au deposits, banded iron and Cu-Zn ore deposits, large sedimentary-metamorphogenic borate and magnesite deposits, Cu-W deposits in tourmalinites, exhalation-sedimentary Pb-Zn ore deposits, and large polygenic REE-Fe-Nb ore deposits. The Riphean-Cambrian terrigenous-carbonate strata are represented by stratiform Pb-Zn and fluorite deposits. Mesozoic metallogenic zones related to volcano-plutonic complexes of intraplate series coincide with zones where the folded basement is made of Precambrian ore-bearing series. Gold deposits are typical of all the metallogenic zones, but most of them are related to Mesozoic volcano-plutonic complexes.  相似文献   

5.
The pre-Sinian basement on the southwestern margin of the Yangtze paraplatform consists of threemetamorphic rock series of different ages. Being products of different tectonic events and environments, theydiffer markedly in original rock sequences, metamorphism. tectonic style and characteristics of granitoids andmineral deposits. The Late Archean Kangdian cration mainly comprises the Kangding and Julin Groups with ametamorphic age of nearly 2500 Ma. They are supracrustal rocks dominated by mafic volcanics enclosed introndhjemitic rocks The craton is believed to represent a granite-greenstone terrane of Late Archaean age.There occur mineral deposits such as graphite and kyanite deposits of metamorphic origin, muscovite depositsin pegmatites and gold quartz veins in gneissic granites, banded hornblende-magnetite mineralization and cop-per and zinc mineralizations related to felsic volcanics. Large V-Ti-bearing magnetite deposits were also formedin the mafic. ultramafic stratiform intrusions emplaced on the margins of the craton during the MiddleProterozoic. Copper and nickel deposits are found in several ultramafic intrusions. Extending in a north-southdirection, the Proterozoic mobile belt consists mainly of the Early Proterozoic Hekou Group and MiddleProterozoic Huili and Kunyang Groups. and they are thought to be accumulations in a Proterozoic rift troughor aulacogen. During the Early Proterozoic, the rift trough was characterized by intense volcanism and pres-ence of iron ore deposits of volcano-magmatic type, iron-copper deposits of exhalative-sedimentary type. TheMid-Late Proterozoic of the rift trough mainly witnessed the formation of sedimentary stratiform copper de-posits and submarine sedimentary iron deposits. In the wake of the emplacement of the Jinningian andChengjiangian granites in the Late Proterozoic, skarn-type tin and tin-iron ore deposits were formed.  相似文献   

6.
陕西省矿床成矿系列的初步划分   总被引:8,自引:4,他引:8  
通过系统总结,首次将陕西省主要矿床初步划分为4个矿床成矿系列组合,22个成矿系列类型,42个成矿系列和若干亚系列。其中省内金矿床的主要成矿系列为燕山期与变质一岩浆热液有关的金多金属矿床成矿系列、略勉板内结合带与岩浆热液有关的金矿成矿系列、商丹板块对接带与变质热液有关的金矿床成矿系列、现代河流中的冲一洪积砂金矿床成矿系列、与热水渗滤作用有关的金矿床成矿系列及活动区造山带与碱性碳酸盐类有关的金矿床成矿系列类型,银矿床的主要成矿系列为复理式建造中的菱铁矿银多金属矿床成矿系列,铜矿床的主要成矿系列为与元古代中-酸性岩有关的铁铜矿床成矿系列、加里东-印支期与中性-酸性花岗岩类有关的铁铜金钨萤石矿床成矿系列、与海相中基性火山岩有关的铜锌矿床成矿系列、前寒武系变质火山岩中的铜锌黄铁矿床成矿系列,钼矿床的主要成矿系列为与中酸性浅成-超浅成小岩体(斑岩)有关的钼铁铜矿床成矿系列,铅锌矿床的主要成矿系列为海底热液喷流-沉积铅锌矿床成矿系列、与热水渗滤作用有关的铅锌矿床成矿系列、海底喷流沉积-热液改造铅锌铜矿床成矿系列,汞锑矿床的主要成矿系列为与热水渗滤作用有关的汞锑矿床成矿系列,重晶石矿床的主要成矿系列为寒武系-奥陶系中的钒钼重晶石磷块岩黄铁矿石煤矿床成矿系列、下志留统中的重晶石铀石煤矿床成矿系列,煤矿床的主要成矿系列为大型内陆盆地中的煤油页岩成矿系列及与海陆交互相沉积岩有关的煤铝黄铁矿粘土高岭土矿床成矿系列类型,岩盐矿床的主要成矿系列为产于奥陶系中的岩盐(钠盐)矿床成矿系列。  相似文献   

7.
总结了召河庙地区金矿的成矿规律,指出本区所发现的具一定规模的金矿(化)点在区域上主要集 分布于青灰窑子-大井-程二沟-东柜一线,矿体均为含金石英脉。容矿岩系为新太古代变质石英闪长岩、斜长岩花岗岩。成矿物质来源主要为古老的变质中基性深成侵入岩,即所谓广义的绿岩带。矿源岩中金物质的活化受深断裂作用、韧性剪切作用、退变质作用、变质流体以及岩浆热液的多重影响,其中以构造作用和岩浆热液最为重要。金矿的形成时期较长,主成矿时期在元古代。预测程二沟-白音查干-东柜一带为今后进一步寻找金矿的优选靶区。  相似文献   

8.
Banded iron formations occur in greenstone belts in which volcanic rocks are predominant. Greenstone belts are not restricted to the Archaean (>2500 Ma), as is commonly perceived, but they continued to form, albeit in lesser abundance, in the Proterozoic. Thus, banded iron formations which are closely associated with volcanic sequences occur in several well-documented early-mid Proterozoic greenstone belts. Examples are the Yavapai belts at Jerome in Arizona, the Trans-Amazonian belts in Guiana, and the Dalma belts of the Singhbhum region of NE India. Stratigraphic and sedimentological studies are needed to establish the similarities and differences of these iron formations with those in Archaean greenstone belts, and with the banded iron formations which were common in cratonic-shelf environments in the early-mid Proterozoic.  相似文献   

9.
格陵兰地质矿产特征及主要金属矿产找矿方向   总被引:1,自引:0,他引:1  
杨霄  黄亚松 《中国煤炭地质》2013,(12):99-105,119
格陵兰为前寒武纪地盾区,出露的岩石以片麻岩和上壳岩为主,形成于太古代和元古代一系列碰撞造山环境;在地盾西部、东部和北部边缘广泛发育了元古代一中生代的沉积地层和盆地;岩浆活动贯穿于太占代至新乍代,形成了岩性多样、规模不一的岩浆岩。格陵兰矿产资源丰富,已发现铁、金、铅锌、稀有稀土、铂族、铜、镍等多种矿产资源。分析表明,格陵兰西南部、中西部和北部分布的条带状含铁建造是寻找BIF型铁矿的有利靶区;西南部太古代绿岩带、南部凯蒂利z也活动带具有寻找绿岩带型金矿和造山带型金矿的潜力;西南部碳酸岩、碱性岩岩体是寻找稀有稀土金属矿床的主要靶区;西北和东北部发育的沉积箍地和地层是寻找SEDEX型和MVT型铅锌矿以及砂页岩型铜矿的有利地区;西南和东南部分布的太古代一元占代丛性、超基性岩是寻找铂族元素和镍矿的有利靶区。  相似文献   

10.
冀东地区是我国重要的金矿床密集区之一。根据金矿床形成的地质环境和后期的活化改造作用特征,将本区金矿床划分为两大系列、五大类型,两大系列为以太古宙花岗岩-绿岩带为容矿岩的金矿床系列和以中新元古界碎屑岩碳酸盐岩为容矿岩的金矿床系列。以太古宙花岗岩-绿岩带为容矿岩的金矿床系列又划分为绿岩带同构造期初生型金矿床和绿岩带后构造期与中生代壳源深熔花岗岩有关的再生型金矿床。以中新元古界碎屑岩碳酸盐岩为容矿岩的金矿床系列再细分为与造山带岩浆隐爆作用有关的金矿床,与造山带碰撞型壳源深熔花岗岩有关的金矿床和与造山带伸展构造作用有关的金矿床。同时分别叙述了冀东地区各类金矿床的地质特征。  相似文献   

11.
硅铁建造型铁矿床是太古代——早元古代火山作用、构造作用,沉积作用、变质作用的结果。硅铁建造型铁矿石担的研究对确定铁矿床成因类型、判别沉积环境、评价利用铁矿石都有着现实意义。詹姆斯(James H·L)金伯利(Kimberley M·M)古德温(Goodwin A·M)格罗斯(Gross G·A)等从铁矿物组合、岩石组合上划分了铁矿石相类型,提出形成铁矿石相的沉积环境,但并未对铁矿石相划分、相环境判别建立定量数值指标和相环  相似文献   

12.
The Archaean lode gold deposits in the Mt. York District, Pilbara Block, Western Australia are hosted in banded iron formation (Main Hill/Breccia Hill prospect) of the ca. 3.33 Ga Gorge Creek Group and in amphibolites (Zakanaka prospect) of the ca. 3.46 Ga Warrawoona Group. Gold mineralisation at the Main Hill/Breccia Hill prospect is associated with breccias comprising quartz clasts in a quartz-pyrrhotite matrix, and quartz-amphibole veins, with löllingite being the major host for gold. Minimum temperatures for gold mineralisation at the prospect are constrained as 455°C to 550°C by arsenopyrite thermometry. Gold mineralisation at the Zakanaka prospect is spatially associated with quartzclinopyroxene-calcite-microcline-calcic-amphibole veins and biotite altered wallrock adjacent to the veins. Temperatures for vein emplacement are estimated as 480°C to 570°C using both plagioclase-amphibole thermometry and mineral equilibria with respect to T and XCO2. The timing of gold mineralisation relative to the peak of metamorphism is constrained by mineral textures and the relative temperatures of hydrothermal alteration and metamorphism. Gold mineralisation at both deposits was broadly synchronous with the peak of regional amphibolite facies metamorphism, which reached temperatures of 520°C to 640°C based on amphibole-plagioclase and garnet-biotite thermometry. In this respect, the deposits are similar to other well documented syn-amphibolite facies lode gold deposits from the Archaean Southern Cross greenstone belt in the Yilgarn Block, and represent the deeper section of a crustal continuum of lode gold deposits that includes mesothermal deposits such as those at Kalgoorlie at higher crustal levels.  相似文献   

13.
Mineralization Ages of the Jiapigou Gold Deposits,Jilin   总被引:1,自引:0,他引:1  
The Jiapigou gold deposits are typical vein type deposits associated withArchaean greenstone belts in China. According to the crosscutting relationships between dykesand auriferous veins, single hydrothermal zircon U-Pb dating and quartz K-Ar,~(40)Ar-~(39)Ar andRb-Sr datings, the main mineralization stage of the Jiapigou deposit has been determined to be2469-2475 Ma, while mineralization superimposition on the gold deposit occurred in1800-2000 Ma and 130-272 Ma. They form a mineralization framework of one oldermetallogenic epoch (Late Archaean-Early Proterozoic) and one younger metallogenic epoch(Mesozoic) of gold deposits in Archaean greenstone belts in China.  相似文献   

14.
The paper presents characteristics of the least studied iron formations of the East European Craton (Archean banded iron formations of the calciphyre-metabasite-gneiss association), a typical member of granulite complexes of the Ukrainian Shield, Belarussian-Baltic region, and Voronezh crystalline massif. They are mainly composed of diverse metasedimentary rocks: aluminous gneisses; silicate-magnetite, magnetite, and barren quartzites; eulysites; calciphyres; and marbles associated with metavolcanic rocks. Data on chemical compositions of the metasedimentary rocks are summarized for the first time and their possible primary mineral composition has been reconstructed using the MINLITH software. It is shown that they could be formed from a lithogenetic series of sediments linked by gradual transitions and geochemical commonness of sediments: from fine-grained terrigenous insufficiently mature sediments to chemogenic sediments depleted in terrigenous material (ferruginous-siliceous, ferruginous-siliceous-carbonate, siliceous-carbonate, and carbonate sediments). The inferred primary mineral assemblage indicates sedimentation in the central parts of large paleobasins in a reducing environment characterized by deficit of oxygen and excess of carbon dioxide. Lithological specifics of the banded iron formations in different regions presumably reflect different distances of sedimentation zones from submarine hydrothermal discharge sites and sources of terrigenous material. The banded iron formations at the present-day erosion section of basement represent metamorphosed fragments of the lateral-facies zoning of rocks of the Archean sedimentary basins (or a single basin) of the East European Craton. Unlike other Early Precambrian banded iron formations of the East European Craton, rocks of the calciphyre-metabasite-gneiss association are marked by a high Mn content.  相似文献   

15.
Volcanogenic massive sulfide (VMS) deposits are one of the most important base–metal deposit types in China, are major sources of Zn, Cu, Pb, Ag, and Au, and significant sources for Co, Sn, Se, Mn, Cd, In, Bi, Te, Ga, and Ge. They typically occur at or near the seafloor in submarine volcanic environments, and are classified according to base metal content, gold content, or host-rock lithology. The spatial distribution of the deposits is determined by the different geological settings, with VMS deposits concentrated in the Sanjiang, Qilian and Altai metallogenic provinces. VMS deposits in China range in age from Archaean to Mesozoic, and have three epochs of large scale mineralization of Proterozoic, Palaeozoic and Mesozoic. Only Hongtoushan Cu–Zn deposit has been recognized so far in an Archaean greenstone belt, at the north margin of the North China Platform. The Proterozoic era was one of the important metallogenic periods for the formation of VMS mineralization, mainly in the Early and Late Proterozoic periods. VMS-type Cu–Fe and Cu–Zn deposits related to submarine volcanic-sedimentary rocks, were formed in the Aulacogens and rifts in the interior and along both sides of the North China Platform, and the southern margin of the Yangtze Platform. More than half of the VMS deposits formed in the Palaeozoic, and three important VMS–metallogenic provinces have been recognized, they are Altai–Junggar (i.e. Ashele Cu–Pb–Zn deposit), Sanjiang (i.e. Laochang Zn–Pb–Cu deposit) and Qilian (i.e. Baiyinchang Cu–Zn deposit). The Triassic is a significant tectonic and metallogenic period for China. In the Sanjiang Palaeo–Tethys, the Late Triassic Yidun arc is the latest arc–basin system, in which the Gacun-style VMS Pb–Zn–Cu–Ag deposits developed in the intra-arc rift basins, with bimodal volcanic suites at the northern segment of the arc.  相似文献   

16.
This paper analyzes literature data on physicochemical parameters and chemical composition of fluids of Precambrian endogenous gold deposits. The average values and ranges of temperature, pressure, and salinity of fluids from the Archean and Proterozoic gold deposits are estimated. It is revealed that fluids of Archean deposits are dominated by methane, while those of Proterozoic deposits, by nitrogen. It is proposed that the accumulation of nitrogen in the atmosphere is related to the intense nitrogen degassing from the Earth’s interior. The highest pressures of endogenous fluids in this period could reflect specifics of deep geodynamics of the planet in the Proterozoic. The large gold deposits (>100 tons) are characterized by narrower range of physicochemical parameters as compared to small deposits. The contribution of heated chloride brines in the formation of majority of large Proterozoic deposits is established.  相似文献   

17.
The North China Craton(NCC) is one of the most ancient cratons in the world and records a complex geological evolution since the early Precambrian. In addition to recording major geological events similar to those of other cratons, the NCC also exhibits some unique features such as multistage cratonization(late Archaean and Palaeoproterozoic) and long-term rifting during the Meso–Neoproterozoic. The NCC thus provides one of the best examples to address secular changes in geological history and metallogenic epochs in the evolving Earth. We summarize the major geological events and metallogenic systems of the NCC, so that the evolutionary patterns of the NCC can provide a better understanding of the Precambrian NCC and facilitate comparison of the NCC with other ancient continental blocks globally. The NCC experienced three major tectonic cycles during the Precambrian:(1) Neoarchaean crustal growth and stabilization;(2) Palaeoproterozoic rifting–subduction–accretion–collision with imprints of the Great Oxidation Event and(3) Meso–Neoproterozoic multi-stage rifting. A transition from primitive- to modern-style plate tectonics occurred during the early Precambrian to late Proterozoic and is evidenced by the major geological events. Accompanying these major geological events, three major metallogenic systems are identified:(1) the Archaean banded iron formation system;(2) Palaeoproterozoic Cu–Pb–Zn and Mg–B systems and(3) a Mesoproterozoic rare earth element–Fe–Pb–Zn system. The ore-deposit types in each of these metallogenic systems show distinct characteristics and tectonic affinities.  相似文献   

18.
Proterozoic rocks of the Cloncurry district in NW Queensland, Australia, are host to giant (tens to hundreds of square kilometers) hydrothermal systems that include (1) barren regional sodic–calcic alteration, (2) granite-hosted hydrothermal complexes with magmatic–hydrothermal transition features, and (3) iron oxide–copper–gold (IOCG) deposits. Fluid inclusion microthermometry and proton-induced X-ray emission (PIXE) show that IOCG deposits and the granite-hosted hydrothermal complexes contain abundant high temperature, ultrasaline, complex multisolid (type 1) inclusions that are less common in the regional sodic–calcic alteration. The latter is characterized by lower salinity three-phase halite-bearing (type 2) and two-phase (type 3) aqueous inclusions. Copper contents of the type 1 inclusions (>300 ppm) is higher than in type 2 and 3 inclusions (<300 ppm), and the highest copper concentrations (>1,000 ppm) are found both in the granite-hosted systems and in inclusions with Br/Cl ratios that are consistent with a magmatic source. The Br/Cl ratios of the inclusions with lower Cu contents are consistent with an evaporite-related origin. Wide ranges in salinity and homogenization temperatures for fluid inclusions in IOCG deposits and evidence for multiple fluid sources, as suggested by halogen ratios, indicate fluid mixing as an important process in IOCG genesis. The data support both leaching of Cu by voluminous nonmagmatic fluids from crustal rocks, as well as the direct exsolution of Cu-rich fluids from magmas. However, larger IOCG deposits may form from magmatic-derived fluids based on their higher Cu content.  相似文献   

19.
《Ore Geology Reviews》2008,33(3-4):500-510
Archean terrains of the Quadrilátero Ferrífero comprise a greenstone belt association surrounded by granitoid–gneiss complexes, mainly composed of banded TTG gneisses whose igneous protoliths are older than 2900 Ma. This early continental crust was affected by three granitic magmatic episodes during the Neoarchean: ca. 2780 to 2760 Ma; 2720 to 2700 Ma; and 2600 Ma. Dating of felsic volcanic and volcaniclastic rocks defines a felsic magmatic event within the greenstone belt association around 2772 Ma, contemporaneous with emplacement of several of the granitic plutons and constrains a major magmatic and tectonic event in the Quadrilátero Ferrífero. Lead isotopic studies of lode–gold deposits indicate that the main mineralization episode occurred at about 2800 to 2700 Ma.Proterozoic evolution of the Quadrilátero Ferrífero comprises deposition of a continental-margin succession hosting thick, Lake Superior-type banded iron formations, at ca. 2500 to 2400 Ma, followed by deposition of syn-orogenic successions after 2120 Ma. The latter is related to the Transamazonian Orogeny. The western part of the Quadrilátero Ferrífero was also affected by the Brasiliano Orogeny (600 to 560 Ma).  相似文献   

20.
前寒武纪条带状铁建造中的金矿床   总被引:2,自引:0,他引:2  
前寒武纪铁建造中的金矿床是世界上一种重要的金矿类型,深受国内外地质工作者的重视 。前寒武纪铁建造中金矿床具有不同的类型特征及成因模式,通过分析有启发和借鉴意义的几个该类型金矿床,认为运用地质对比方法研究前寒武纪铁建造中金矿床具有重大意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号